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THE ART OF SNARING DRAGONS
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ABSTRACT

DRAGONS are formidable problems in elementary mechanics not amenable to solution by naive
formula cranking. What is the intellectual weaponry one needs to snare a Dragon? To snare a Dragon
one brings to mind an heuristic frame – a specifically structured association of problem solving ideas.
Data on the anatomy of heuristic frames – just how and what ideas are linked together – has been
obtained from the protocols of many attacks on Dragons by students and physicists. In this paper
various heuristic frames are delineated by detailing how they motivate attacks on two particular
Dragons, Milko and Jugglo, from the writer’ s compilation. This model of the evolution of problem
solving skills has also been applied to the interpretation of the intellectual growth of children, and in an
Appendix we use it to give a cogent interpretation for the protocols of Piagetian “Conservation”
experiments. The model  provides a sorely needed theoretical framework to discuss teaching strategies
calculated to promote problem solving skills.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the Laboratory’ s education research is provided in part by the
National Science Foundation under Grant EC-40708X.

The line drawings illustrating these papers are reproduced from the text of H.A. Cohen, A Dragon
Hunter’ s Box, Hanging Lake Books, Warrandyte, Victoria, Australia 3113 © H.A. Cohen, 1974. All
Rights Reserved.
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0. INTRODUCTION

Physicists tackle problems. Students also tackle problems. But in what way does the tyros efforts differ
from the experts? This paper grew out experiences in teaching a college-level course in mechanics,
when I found that students might “follow” line by line demonstrations examples, yet had little belief or
understanding in the qualitative conclusions. I probed deeper, and found, that there were many
problems which could be solved qualitatively, with answers such as “The same”, “More”, “Less”
which with some coaxing, or even counterargument, by the presenter, students could reach a confident
conclusion. Yet this confident, “naive” solution of the tyro was clearly wrong to an “enlightened
expert”. I use the term “enlightened expert” advisedly, as I found that I could devise problems that even
professional physicists, would, on initial encounter, give the same answer as tyro physicists. But the
experts, when advised of their error, would (mostly) rapidly come to see an inadequacy in their initial
effort, and develop the (correct) expert response.

This preliminary experience lead me to devise a cluster of problems, in a small componendium10,
What G Killed Ned Kelly? The problems were illustrated, to stimulate the imagination, and were
augmented by hints, suggestions, and counter-suggestions, introduced by a bevy of whimsical
characters aligned with the “”Dragon”  theme. The title was based on a question I had devised seeking
a mechanical analysis of an actual historical event: the outrageous story of how the (“last”) bushranger
Ned Kelly was hung at the Old Melbourne Goal in 1876  --  not just once, but four times ain all,  using
ropes of various length by an executioner of an amazing experimental character.  But most of the
problems I devised were less macabre and challenging in quite a different sense:  essentially
qualitative, requiring no more than answer such as “The Same” or “More/Less” yet such that provided
with a modest amount of discussion, students could confidently give an answer. And so could my
academic colleagues. But mostly the students, and surprisingly often some of my colleagues,
confidently asserted the wrong answer. What was going on here?

 It seemed that when faced with familiar problems, for which the outline of a solution is familiar,
traditional experts can regurgitate what they have learnt. However when faced with a problem in
mechanics that is unfamiliar,  both physicists as well as tyros tend to have recourse to general problem
solving schemes (later in this paper termed heuristics frames, or simply heuristics, which may require
elaboration, amendment to achieve a proper solution.

I turned for inspiration to recent work in the history and philosophy of science. The noted philosopher
of the history of mathematics, Imre Lakatos, pointed out 1 that the historical evolution of a
mathematical proof was furthered by the invention/discovery of what Lakatos termed “Monsters”,
counter-examples with bizarre feature not conceived of  by the originators of a proof. Lakatos saw two
major ways of dealing with “Monsters”
(i) Monster barring – where the  gamut of a  theorem was changed so as to exclude particular

Monsters.
(ii) Monster adjustment  - where the description of the Monster was altered so that it could be

recognised as consistent with the (broader) intention of the proof.

The concept of Monster-barring can be readily illustrated by one of my Dragons, called “Inducia
Capillaria”. This Dragon is indeed one of Lakatos’s Monsters, because it is a counter-example to the
result that can be expressed qualitatively as:

The narrower a capillary, the greater the height that a column of water will be drawn up a
vertical capillary.

(See below).Monster barring can be applied by rephrasing the result as

The narrower a capillary, the greater the height that a column of water will be drawn up a
vertical capillary, provided that the column height above external water level does not exceed
the vertical height of the capillary (above the same datum).

so that the derivation needs to be rather more careful to lead to this outcome.
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Fig: “Inducia Capillaria – 1” .  This diagram serves is a Lakatosian Monster to a derivation
presented in many elementary texts: that the height H of a column of liquid rises (or falls) up
(or down)  a (vertical) capillary tube is inversely proportional to the inner  radius of the
capillary. Formally H = K/r . This Monster is reproduced from H.A. Cohen, A Dragon
Hunter’s Box, Hanging Lake Books, Warrandyte, Victoria 1974 with Permission.

I found that monster barring is a problem solving strategy much used by students of physics, who use it
to carry simultaneously a growing knowledge of physics, whilst at the same time holding notions that
are contrary to it. An fine example was provided by responses to demonstrations of procession.

Fig (i) Student Expectation re gyroscopic effect. A flywheel is spinning in the bax in a vertical
plane. The projection of the flywheel in the top plane. Following an impulsive torque, a
twisting about the vertical, students (falsely) expect this projection to rotate, as  to A’B’

Impulsive Torque
Anticlockwise twisting
in top plane of box
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Students say that such precessional behaviour is counter-intuitive, and apply Monster barring to
separate their common-sense thinking from this issue.  But it is clear that a student who disbars such a
problem area by monster-barring must perform more radical mental gymnastics to become an effective
problem solver within such an area.

So what can the philosophers of science say about radical reorganization of  knowledge? Lakatos
further developed his pioneering ideas on the evolution of mathematical “proofs” to encompass broader
realms of science in terms of “research programmes” 2.  But the history of mechanics has been most
insightfully  developed by Thomas Kuhn,  in The Copernican Revolution3. In The Structure of
Scientific Revolutions4, Kuhn insisted that the history of science is based on periods of “normal
science” in-between which there are periods of  “revolutionary”  ferment.  It is during “normal
science”, that scientists steadily extend the range and application of scientific theories. During such a
period, there are some puzzles that seem hard to solve or understand, but there is confidence that with a
little more  work these quirky results will be explained. But each normal science period ends with a
revolution, after which the quirky puzzles are seen as counter-examples to the previous established
body of theory. During the revolution, a often bitter dispute rages between the advocates of the old and
the new.

It became clear to me that for the individual student of physics, some of the Dragons,  were just the
quirky problems whose solution required a radical reorganisation of a students problem solving skills.
It further appeared that problems such as the Dragon Milko discussed in Section 2, were strongly
analogous to Paigetian conservation puzzles. Seymour Papert has provided a cogent exposition of
certain ‘classic’ Paigetian Conservation experiments, that probe the intellectual development of young
children. Largely inspired by Papert, and with inspiration from Minsky’s Frames concept, a formalism
has been developed to describe the cluster of problem solving ideas as a heuristic, where the underline
nature of the term is meant to imply a multi-dimensional quantity, as is similarly done to denote three-
dimensional vectors.

In Table I the components of a HEURISTIC are delineated.

TABLE !
THE ANATOMY OF A HEURISTIC

COMPONENT DESCRIPTION
(Core) heuristic An elemental, crude problem solving idea,

probably acquired in childhood.
Problem Reduction
Devices and Algorithm Selector

How to reshape the problem and which algorithm
to apply.

Debug routines What to do when things “go wrong”.
Demons:
Warnings, Caveats,
Flags, Pointers

Miscellaneous:
“Watch out”  . Limitations.
“Try another heuristic frame”

In Table 1 and elsewhere in this paper, by an algorithm is meant a highly specific procedure or
formula. The (core) heuristic of a heuristic  is the same sort of mental object as what Polya7 termed a
heuristic – a problem solving idea of some potency. (Polya confined his attention to mathematics,
however). Problem reduction involves putting the problem in a form suitable for the application of
particular algorithms. If the unexpected happens – or even when one is informed that the answer
derived is “wrong” – one calls upon the Debug Routines of the heuristic. Also linked with the other
components of a heuristic  are what I’ ve termed Demons: the image is of some little beast that waits
for some specific little occurrence to trigger his attention – when he passes on his message. At any rate,
under the heading of “Demons” are lumped together some miscellaneous ideas bound in the heuristic,
such as warnings, caveats, and directives to other frames. A few examples of Demons are presented
later in this paper.
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1. A TEACHING STRATAGEM

Every teacher of physics would, I feel, assert that he strives to teach students not only how to solve
certain paradigm examples – but that he also hopes to impart a cluster of generalized skills in problem

Every teacher of physics would, I feel, assert that he strives to teach students not only how to solve
certain paradigm examples – but that he also hopes to impart a cluster of generalized skills in problem
solving that will equip students to comprehend and analyse a greater range of problems than could
possibly be discussed in lecture classes and tutorials. But is there any specific way to achieve this
objective? The purpose of this introduction is to recount some of the more accessible ideas in a
teaching stratagem I have been developing for this purpose. This stratagem shares elements in common
with what I call the Fermi stratagem (in Physics teaching) and the Polya stratagem ( in Mathematics
teaching).

In the Fermi stratagem  students are posed problems of a more project-like character. Some such Fermi
problems are relatively open-ended e.g., “How, in terms of Physics, do we walk and run?”. Other
Fermi problems have a definite solution but are of a “non-standard” form requiring the skilful selection
and artful selection of perhaps quite elementary physical models. Teachers wishing to follow the Fermi
stratagem face two difficulties. The first is the scarcity of Fermi problems, or rather the scarcity of
compilations of such problems. In this regard, Walker’ s “Flying Circus”5  is a very welcome addition
to the Physics teaching literature. This writer has also compiled a collection of non-standard problems
(which he calls “Dragons”) in elementary mechanics, A Dragon Hunter’ s Box of which some of the
Dragons may be aptly characterised as Fermi problems6. The second difficulty in introducing Fermi
problems is the absence of any comprehensive tutor’ s guide embodying theoretical analysis and
practical experience in the presentation and effective utilization of such problems. In fact the casual
introduction of Fermi problems into certain innovatory courses of recent years has often lead to
obvious failure, as the students participating have lacked any model of how to proceed in tackling any
problem other than those more conventional problems which I call “formula crankers”.

In the Polya stratagem, students already familiar with the tricks and techniques needed for particular
problems, are given specific instruction in powerful general problem solving ideas - - what Polya terms
mathematical heuristics. The style of presentation, as evidenced by the structure of Mathematics and
Plausible Reasoning7 is to   first explain a particular heuristic, and demonstrate its applicability to a
particular problem: the student is then posed a graded set of problems which are amenable to solution
via that heuristic. The writer is not aware of any extensive application of the Polya stratagem to Physics
teaching.

My own teaching stratagem grew out of an attempt to implement the key ideas of Fermi and Polya in
the context of a college course in elementary mechanics. I was especially keen to get away from the
traditional emphasis on problems which may be characterised as “formula-crankers” and to engage
students in problems which had more of the flavour of research problems8 in Physics, such as Fermi
problems. There are in fact very few published Fermi problems in elementary mechanics, and it seems
that the typical problem actually posed by Fermi was “How many piano tuners are there in New York”9
So in order to produce a significant compilation of challenging problems for student use I was obliged
to devise a number of new problems in elementary mechanics which I termed Dragons to express their
formidable character. In line with this playful terminology, the first compilation of Dragons was
produced in a hand lettered and illustrated booklet 10 entitled “What G killed Ned Kelly ? and Other
Problematical Dragons” (Ned Kelly – an Australian folk hero – the last of the bushrangers – was hung
in Melbourne in 1867). The “Ned Kelly” Dragon book was used in conjunction with the lectures and
tutorials of a course in elementary mechanics.11

It is now opportune to discuss the pedagogic principles underlying the selection and construction of the
Dragons of the original compilation 10and its successor6.. The Dragons were conceived as providing
scope for the discussion of problem solving per se rather than particular physical principles. An
underlying assumption was that many students try to solve problems in accord with the following
model:

The Formula Cranker’ s Model



6

Step 1. Look at P, the problem to be solved
Step 2. Scan one’ s repertoire of all the problems one can solve, until one finds S similar to P.
Step 3. Apply the algorithm used to solve S, to solve P.

I’ ve called this model the Formula Cranker’ s Model of Problem solving as this model will, in fact, be
of some real service to a student in the solution of a formula cranker - - a problem in which has been
specified precisely those elements to be substituted in a familiar formula: for instance if shape
parameters ( such as might be involved in a moment of inertia) are not explicitly labelled and specified
the “similar” problem must not devolve on such parameters. My Dragons were selected or constructed
so that like the real problems tackled in research the Formula Cranker’ s Model would fail. Consider
first the Dragon Milko of Fig (iv). Because Milko explicitly seeks the determination of the pressure at
the bottom of a cylinder-like volume (the interior of a milk bottle), this Dragon is clearly “similar” to
the calculation of the pressure at the base of a cylindrical column of liquid. In this sense the Dragon is
also “similar” to other calculations of base pressure such as the pressure upon the sole of one’ s shoes.
Hence applying to Milko the algorithm of the “similar” problems, the base pressure P is given in terms
of the base area A and the total weight of the contents of the bottle, W, as

p  = W/A

This expression is entirely false, and is an instance of how the Formula Cranking Model can lead to an
inappropriate formula. Consider next the Dragon Jugglo of Fig (xiv). It happens that this Dragon may
be successfully snared using the same formulas as are applied to the calculations of the mechanics of a
rigid body. Yet as juggling is in no sense “similar” to a rigid body, students following the Formula
Cranker’ s Model of action will not arrive at such an analysis (as is given under the caption “In Toto”
in Section 3.) That is, by this example, we see how the Formula Cranker’ s Model may prevent
students from recognising the applicability of quite familiar algorithms. The third point to be made
about the Formula Cranker’ s Model is that even if following this model one determined an appropriate
algorithm, application to the given problem may lead to a mess of algebra which is hard to untangle to
finally solve the problem. An illustration of this sort of phenomena is provided in Section 2, below the
heading Formula Crank.

The above examples indicate that exposure to those formidable (yet elementary) problems I’ ve termed
Dragons highlights to students the inadequacy of the Formula Cranker’ s Model of Problem Solving.
But in fact this is only a minor aspect of what can be learnt from such encounters. Particularly when
one has in fact produced the canonical wrong answer to a Dragon, a study of such encounters, using
introspection and observation of other students, reveals the sort of mental construct – collection of
associated ideas – one has brought to bear on the problem.

How in fact does one solve physics problems ? Over the past few years I’ ve listened intently to many
attempts by students and physicists to snare the Dragons of my collection6 These observations
(protocols is the jargon word in psychology) support the contention that in solving such problems one
uses a structured collection of associated ideas that I’ ve termed a heuristic frame. There appears to be
only a relatively small number of heuristic frames available to any individual, of the order of twenty. In
Table 1, the anatomy of a heuristic frame is revealed..

TABLE !
THE ANATOMY OF A HEURISTIC FRAME

COMPONENT DESCRIPTION
(Core) heuristic An elemental, crude problem solving idea,

probably acquired in childhood.
Problem Reduction
Devices and Algorithm Selector

How to reshape the problem and which algorithm
to apply.

Debug routines What to do when things “go wrong”.
Demons:
Warnings, Caveats,
Flags, Pointers

Miscellaneous:
“Watch out”
“Try another heuristic frame”
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In Table 1 and elsewhere in this paper, by an algorithm is meant a highly specific procedure or
formula. The (core) heuristic of a heuristic frame is the same sort of mental object as what Polya7

termed a heuristic – a problem solving idea of some potency. (Polya confined his attention to
mathematics, however). Problem reduction involves putting the problem in a form suitable for the
application of particular algorithms. If the unexpected happens – or even when one is informed that the
answer derived is “wrong” – one calls upon the Debug Routines of the heuristic frame. Also linked
with the other components of a heuristic frame are what I’ ve termed Demons: the image is of some
little beast that waits for some specific little occurrence to trigger his attention – when he passes on his
message. At any rate, under the heading of “Demons” are lumped together some miscellaneous ideas
bound in the frame, such as warnings, caveats, and directives to other frames. A few examples of
Demons are presented later in this paper.

The concept of Heuristic frames provides a description of the evolution of problem solving skills in
terms of

a) The growth of one’ s repertoire of algorithms.
b) The elaboration and augmentation of the components of one’ s heuristic frames.

The latter process is termed the ‘debugging of heuristics’ : in debugging the core heuristic is essentially
unalterable, only the other components of the frame can be edited. A simple description of problem
solving in terms of the components of heuristic frames is contained in a model which is called the
Horse and Cart or HAC Model (of problem solving).

TABLE II

HORSE AND CART MODEL OF PROBLEM SOLVING (H.A.C.)

TO HAC :
Step 1. Given a problem, choose a Heuristic
Step 2 Reformulate the problem and select an Algorithm.
Step 3. Crank the algorithm.
Step 4. In case of trouble, DEBUG.

The  HAC model is presented in Table II. This model essentially states that the choice of Heuristic
precedes the choice of an Algorithm that does the actual Cranking of a problem. As stated above, the
model is over simple, but has proved to be an effective tool in promoting problem solving skill, by
providing a descriptive basis for self-assessment and student counselling. This in total, this paper deals
with a teaching stratagem based on two models:

i) A model for intellectual development in terms of the debugging of heuristics.
ii) A model for problem solving.

An example of how a tutor may aid the intellectual development of a student by directing attention to
the debugging of one particular heuristic is provided by the following example taken from my tutorial
records.

A student complained that he didn’ t “understand” gyroscopic effects. What was meant was that he
could follow the mathematical presentation given in class, yet the behaviour was still surprising. I
probed further and found that if a flywheel was spinning in a vertical plane, and a torque about the
vertical axis was applied for an instant, this student expected the fly-wheel to remain vertical, but for its
plane to rotate about the vertical axis.
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Fig (i) A (False) Student Expectation re gyroscopic effect. See Text

(See Fig(i) ). Imagine that a spinning flywheel is placed inside the box (drawn here in isometric
projection) with the plane of the flywheel parallel to the front face of the box. The spin sense of the
flywheel is marked on the front face, and the projection of the wheel, the line AB, on the top of the
box. A torque, applied briefly, is indicated by its tendency to twist in the top (horizontal) plane, plane,
rather than as a vertical vector. One common student expectation is that the new position of the
flywheel has the projection A’B’  on the top of the box, corresponding to a rotation of the plane of the
flywheel about the vertical .

Figure (i) is the diagram that was drawn while endeavouring to clarifying the student’ s expectation. It
is clear that the student was here invoking the heuristic Parallel – the idea that the effect of a force is a
displacement in the direction of that force. (The direction in this specific case is a screw sense). The
student had selected an algorithm that could be formally stated as

Twisting Force x Time = Amount of Twist
This particular algorithm is appropriate to a high friction environment such as the domestic arena of a
young child. It is essentially an Aristotlean algorithm – part of a physics where forces “cause”
displacements in position. In order to help this student debug I constructed an argument involving the
same heuristic (parallel) and patently presenting a choice between Newtonian and Aristotlean
algorithms for forces:

Consider a canon firing at a target ( drawn schematically from above) in Fig (ii)

       A  ARISTOTLEAN                                                                                 B NEWTONIAN

Impulsive Torque
Anticlockwise twisting
in top plane of box
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Fig (ii) Dashed line is the unperturbed trajectory of a cannon ball. Dotted line denotes
new trajectory after application of an impulsive force according to (A) Aristotlean
Algorithm, (B) Newtonian Algorithm.

Suppose just as the cannon ball emerges from the barrel it is given a short sharp knock. Then, in
accordance with the expectation in Fig (i) of generalised impulsive forces causing  a spatial
displacement in the direction of application the ball should be deviated as shown in Fig (ii)A . Now of
course what actually would take place is properly demonstrated in Fig (ii) B – the effect of the
impulsive force is to give the ball a transverse component of momentum to determine the subsequent
trajectory of the ball. Returning to the flywheel problem, it likewise follows in formal terms that the
effect of an impulsive torque about the vertical is to produce angular momentum about the vertical,
which has to be compounded with the pre-existing.

This is well made by a drawing such as Fig (iii).

 In this figure the original and the additional (angular) momenta are drawn as screw senses on the sides
of a box containing the flywheel. But these two screw senses – compounded in a Newtonian way
(algorithm) – must be just the projection of the resultant motion of the flywheel. So – imaging arrows
drawn on the flywheel showing rotation sense – one deduces that the flywheel – having suffered the
impulsive torque (double arrows in the figure) – changed its plane of motion: the new projection of the
flywheel is shown in Fig (iii) as the straight line CD.

In summary, my first concern as a tutor was to aid this student in debugging the heuristic (Parallel) he
had sought to invoke for the processional problem. (Compare computer programming: one has to
debug the programs one actually writes; on the other hand it pays to learn of other programs).
Confronted with this student a tutor espousing a different strategy might have replied: “Don’ t look at a
wheel like that. Look at a wheel as composed of little parts12, and consider the effect of the applied
forces on each little part .  .  .  .” This particular approach invokes the heuristic “Divide and Conquer”
(discussed later in this paper) and it is well for a student to see a “Divide and Conquer” approach to a
tantalising problem: however, to repeat, in line with the above described model for problem solving,
attention to the debugging of a heuristic is paramount, and should be a tutor’ s first concern.

Physics problems depend on a small number of heuristics specific to physics. In this paper we are to
discuss just seven of these heuristics:

• Formula Crank
• To Paradigm
• In Toto
• Fibre/Capillary
• Add Effects (and Subtract Effects)
• Divide and Conquer
• Process

In this list “Formula Crank” is none other than to apply the Formula Cranker’ s Model of problem
solving, the other heuristics are described in Section 2. For the moment it is important to note just how
few there are, and that in my teaching stratagem explicit names are given to each heuristic. Now in the

Fig (iii) See text
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Polya stratagem students gain “familiarity” with a particular heuristic by applying that heuristic to a
range of different problems. In my stratagem this is also done, but much stress is also laid in applying
different heuristics to the same problem – to stimulate the debugging of these heuristics. And also to
overcome what I call Magic Key Thinking - - the idea that there is just one way of looking at a given
problem ( a unique heuristic).

Just what are these heuristics, and how good are they in practice? Section 2 is devoted to delineating
these six heuristics, and showing their application to the snaring of the Dragon Milko of Fig (iv).
Section 3 shows how four of these heuristics motivate algorithms that successfully snare the Dragon
Jugglo of Fig (xvi). The discussion of Section 2 and 3 will prove of value to any teacher who wishes to
discuss the two Dragons, Milko and Jugglo with students – using the tutorials as heuristic debugging
scenes where the tutor is equipped to guide an ill-formed but not heuristically misguided foray at these
Dragons. In Section 4 the teaching stratagem presented here is reviewed. The Appendix shows the
application of the theoretical framework of this paper to aspects of the intellectual development of
children. The “debugging of a heuristic“ is thereby demonstrated in a simple setting, various heuristic
morals are drawn.
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Fig (iv) The Dragon Milko.
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2. MILKO

Preliminary Remarks

The problematical Dragon Milko of Fig (iv) is reproduced from my compilation A Dragon Hunter’ s
Box. Please read the first paragraph of this Dragon. I have posed this problem to many undergraduates,
graduates, engineers and professional physicists. Invariably they jumped to the conclusion p = p’ ,.
When informed that this was the canonical wrong answer, a line of argument often developed which
made plain the heuristics invoked, and the debug routines, caveats and warnings that were associated
with particular heuristics, The later  paragraphs of this Dragon consist of a series of suggestions and
counter-suggestions designed to provoke such an analysis by the reader. So  .  .  .  .  what heuristics are
there for snaring Milko, and just how is it done ?

In Toto

The heuristic “In Toto” embodies treating the diverse parts of a physical system as a single system. In
the text of Milko the statement of the “would-be physicist” suggests that the w.b.p. - - like many first
exposed to this Dragon - - has adopted an “In Toto” viewpoint and applied an elementary statics
algorithm to equate the total gravitational force W to the product of base area A and base pressure.

On being informed that they have given the canonical wrong answer for Milko, “In Toto” champions - -
who have treated the milk as a whole - - tend to
a) Check whether they have included too much in the whole
b) Check whether they have included too little in the whole
c) Switch to “Divide and Conquer” viewpoint

The routines (a) and (b) are debug routines (or part of debug
routines) associated with the “In Toto” heuristic. (c) is what I’ d
simply call a flag or pointer to an alternative heuristic. Of course
the more skilful problem solvers are more effective in invoking
the above (and other) debug routines.

Debug routine (a) suggests to check what was included in the
quantity W: and clearly it was the weight of the bottle, so that
W/A is the pressure at the base of the bottle at the glass/table
boundary. At this stage there’ s a strong inducement to switch to
“Divide and Conquer” and check whether the pressures above
and below the glass base of the bottle are equal or not. (See the
discussion under the heading “Divide and Conquer”)

Debug routine (b) inspires the question “Is the milk really just
sitting there with just the force of gravity and base pressure
(times base area) holding it in place?” This leads to the more
particular question as to whether the side-wall pressure forces
can have a net vertical sum. Now side-wall pressure forces
don’ t cancel - -  although they do where the walls are vertical –
but not where the bottle walls are slanting. As illustrated in Fig
(v) the reaction forces have a net downward sum X when the
contents are homogenous, X’  after separation of cream.

Applying  the usual statics algorithm,

Force on base before separation p A = W + X
Force on base after separation       p’A  = W + X’

Fig (v) Sketch of wall
reaction (due to pressure)
forces acting on the contents
of a milk bottle
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When the milk separates, the density of liquid in the neck is less, so that pressures in this region are
less, so that the sum of all the sidewall reaction force is less after separation:

X’   < X

and hence the conclusion p’  < p . The base level pressure drops after separation.

Divide and Conquer

The heuristic that I’ ve called “Divide and Conquer” exhorts one to divide a
physical system into a number of parts, and to solve the various sub-problems
before assembling the component parts and the corresponding sub-problems.
The example of this heuristic applied to snare Jugglo is rather more cogent than
what we do here.

We take as starting point the calculation of pressure below the base of the
bottle presented above. Break the bottle into the parts shown in Fig (vi). The
vertical tension in the sidewalls of the bottle is easily overlooked. By
considering the equilibrium
of the base one deduces:

            W = pA  - T  ;             W = p’A  - T’
and 

where T, T’  are the (corresponding) vertical sums of the sidewall forces at the
base. By considering the equilibrium of the sides of the bottle, one deduces that T
and T’  are exactly cancelled by the vertical sum of the forces due to liquid

pressure acting on the sides, i.e.,

T  =  X T’   = X’

where X(X’ ) is the same quantity as determined in the “In Toto” discussion. Thence, on comparing X
and X’ , one deduces that base pressure is less after separation, p’  < p.

Formula Crank

The heuristic “Formula Crank” involves the application of what in the introduction was called the
Formula Cranker'‘  Model of Problem Solving. To illustrate the potency of Formula Crank -–I will
repeat an apocryphal story about Feynman and his early work. 13. It appears that in a discussion Jauch
informed Feynman of the 1931 paper of Dirac which showed that there was an analogy between
unitary transformations in quantum mechanics and the exponential of S where S was a classical
quantity. Whereupon there and then Feynman proceeded to manipulate the “analogous” classical
expressions as though they were the quantum mechanical unitary transformations, to yield a first crude
version of what was to become his important “Space Time Formulation of Quantum Mechanics”.
Clearly this was Formula Crank motivated work – but Feynman had to call upon all his intellectual
resources – his elaborated (debugged) heuristics - - to make a mess of meaningless formulae into an
important element of modern physics. To illustrate the impotency of Formula Crank  by itself – here is
how it might be applied to Milko. First, to recapitulate th discussion of the Introduction. A devotee of
Formula Crank will take recourse to other calculations of base pressure, as of the pressure at the base of
one’ s shoe, to calculate a constant base pressure

p  = W/A
in terms of the weight, W, of the contents of the milk bottle, and base area A. If the validity of this
result were queried, what would a Formula Cranker do? Very little, observation suggests.  The
weakness in Formula Crank is that there is no means to debug a solution other than relatively
capriciously selecting a new algorithm. So as a next step, consider the application of what might be
billed as the most comprehensive algorithm for calculating pressures, the formula

p  =  Σi (ρi h i)g

Fig vi   Milk
bottle broken
into two sections
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where the summation is over layers of length hi of  material of density ρi . We apply this formula to the
simplified shape “mathematical milk bottle” of Fig (vii). where  subscript 1 refers to the top of the
bottle, and subscript denotes the lower volume.  For homogenous milk the base pressure is

p’   =    (ρ1 h 1      +   ρ2 h 2 )g

where  ρ1 is density of cream. But this algorithm isn’ t enough. Conservation of matter requires that

ρ1 V 1      +   ρ2 V 2      =     ρ ( V 1      +   V2 )

where  ρ is the density of the milk before separation. By geometry, these volumes are given in terms of
areas and heights by

                V 1      =   A1 h 1 V 2      =   A2 h 2
When one could deduce the clumsy formula:

p’            (ρ1 h 1      +   ρ2 h 2 )( V 1      +   V2 )
____       =          _________________________________________________________

p’            (ρ1 V 1      +   ρ2 V2) (h 1      +    h  2 )

From this formula it is clear that p’   ≠  p, but it takes a measure of careful algebraic manipulation
before the barest qualitative features emerge. In contrast, consider an “In Toto “ motivated attack. See
Fig (vii), in which the arrows indicate the vertical forces acting on the contents of the “regular” milk
bottle of the mathematician.

Fig (vii) Vertical wall forces acting on the contents of the “mathematicians milk bottle”.

For homogeneous milk

pA2         =     (V  1      +   V2)ρ g      +  (A  1      -   A 2)h 1ρg
    =      W     +  (A  1      -   A2)h 1ρg
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For stratified milk, cream in volume V 1 , cream in volume V 2

p’A2        =      W     +  (A 1      -   A 2)h 1ρ1g

In this case, as cream is lighter than milk, i.e., ρ 1 <  ρ , it follows that p’  < p. The point being made is
that in an argument motivated by the heuristic “In Toto”.  the algorithm gets marshalled - - is
interpretable and therefore under control. A Formula Cranker needs mathematical skills of high order
to organize an elementary physical calculation.

Columns (Reduction Device A)

The heuristic “Fibre” is a valuable problem solving idea utilised by Galileo in his “Dialogues
Concerning Two New Sciences”14 . Galileo imagined a solid beam to be composed of parallel fibres, or
filaments, effectively independent, the total tensile load carried by the beam being the sum of the
tensions in each filament. What must be stressed is that although Galileo talked in terms of beams,
which often are mage of fibrous material (wood), his discussion was intended to apply to beams of any
solid material, so that the fibres are truly fictions. In fact Galileo mentioned stone beams in his

discussion. Galileo used “Fibre” skilfully and was probably aware of such
caveats to be attached to this heuristic as that must check whether it’ s a
reasonable first approximation to consider the fibres independent.

The heuristic “Column” is very closely related to “Fibre”. One might say it
is merely “Fibre” applied to fluids, so that it is the very same heuristic.
“Column” suggests that one analyses differences in fluids by considering the
body of the fluid to be made up of cylindrical columns. The caveat of non-
interference between adjacent fibres/columns is still relevant here. In the
next sub-section we will discuss further the issue as to whether
Fibre/Column are two heuristics or one. For the moment, let’ s consider a
particular “Column” approach to Milko. We’ ll present not only a successful
solution route along which “Columns” will pull a Statics Algorithm - - but
we’ ll also note one of the cul de sacs.

Consider the two fluid columns shown in Fig (vii), one near the axis and
the other well off the axis. This suggests a bug - - it appears at first that
the pressure must differ along the base of the milk bottle - - as the two

columns are of different height. However this bug arose by ignoring wall pressure. By considering the
static equilibrium of a horizontal fibre (column) of fluid it is possible to convince oneself that in fact
there is a unique base pressure. It remains much easier then to consider a column about the axis of the
bottle. To calculate the base pressure, there are two cases:

a) Contents homogenous: base pressure p
b) Contents stratified: base pressure p’

Consider central columns, on base δA, in the two cases. The weight of the contents of column (b) is
less than of column (a) – as basically (b) has an excess of cream. Expressing this evaluation
algebraically,

pδA   >  p’ δA

or

p > p’

That is, the base pressure decreases after separation. At this stage, one might return to examine the fine
detail re the two columns a and b to realise that we have ignored side forces: no matter if sides are
vertical as these forces don’ t contribute to the sums considered. In fact the prime heuristic message to
be leaned from this calculation could be summed up in the following heuristic:

Fig (viii) Columns A
Showing the two fluid
columns discussed
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A Select a thin vertical column that does not intercept any sidewalls

A is one of the Problem Reduction/Algorithm Selection Devices associated with the “Column”
heuristic.

Columns    (Reduction Device B)

We’ ve already suggested that the preceding application of “Columns” amounted to an application to a
hydrostatic context of the “Fibre” heuristic  . However, the special convenience of the central column
of Fig (viii) is not its thinness, but that having vertical sides, the thrusts on the walls of the column had
no vertical components. So that it’ s very natural to consider columns of very large cross-sectional area
in hydrostatics. All will do well, unless the column chosen hits a slanting wall. This is a bit of a
nuisance (bug), but there is a way out as detailed below. But in debugging “Columns” to motivate a
solution like that presented below - - the connection with “Fibre” is getting a little remote. Thus one
should say that originally “Column” was just a portion of the heuristic “Fibre”, but ultimately with
elaboration (debugging) it assumes autonomy as an independent heuristic - - possessing a core common
with “Fibre”. This is a very important process in intellectual development that I call replication of
heuristics: the mother heuristic spawns a daughter with many common elements. However, the idea of
replication is part of my more elaborate psychological model of problem solving – and its presentation
I do not see as part of the teaching stratagem I espouse. Certainly if the sort of application of
“Columns” presented below is as far as this heuristic is elaborated, the solution given is still reasonably
conceived as motivated by “Fibre” debugged for hydrostatics.

Fig (ix) Columns B Approach to Milko

Let us make the thought experiment of enclosing the milk bottle in a cylinder, sharing the same base, as
in Fig(ix). Our aim is to reduce the Milko problem to a discussion of the pressure at the base of
columns standing on the base of the milk bottle. Suppose that in the case when the milk bottle contains
homogenous milk, the space outside the bottle, but in the cylinder is filled with milk to the same level
as within the bottle: the volume of milk exterior to the bottle we call Vext . Likewise. in the case when
the milk has separated into components of density ρ1(cream) and ρ2 (creamless milk), suppose the
exterior volume Vext within the cylinder is filled to corresponding levels with cream and creamless milk
(See Fig (ix)). The presence of the sloping neck of the bottle stands in the way of a “Columns”
motivated algorithm, but we can justify ignoring its presence. Since pressure depends on depth alone,
the pressure of each side of the bottle is the same, so that the pressure at the base of the bottle, p (for
homogenous milk), p’  for stratified (separated)milk)) is unaffected if one removes the bottle walls, but
leaves the fluid contents just as they were. Then  considering the static equilibrioum of the vertical
columns standing on the base aea A of the bottle one has

pA  = W  +  ρ Vext g

p’A  = W  +  ρ1 Vext g
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In these equation W is the weight of the contents of the bottle, ρ1 Vext g  is the weight of the fluid in the
exterior volume in the case where this fluid is predominantly cream. Hence we see at once that

p >  p’
In summary, the significant driving motive in producing the above derivation is the “Column” heuristic
- - relentlessly applied to enable consideration of a vertical column of fluid standing on the bottle base
area. This is a striking example of a more sophisticated problem reduction: bringing to light a Problem
Reduction/ Algorithm  Selection Device which we denote by B, roughly as follows:

B: Choose a vertical column with an “interesting” base. Remove intersecting walls whilst
retaining fluid equilibrium.

Add Effects

The heuristic “Add Effects”  encapsulates the idea of (independent) causes having an additive
cumulative effect. A  verbal formulation of this problem solving schemata would be:

If       X     causes effect E,
and    Y     causes effect F,
then X+Y  causes effect E+F

To implement “Add Effects” in a given problematical situation one must devise or select quantities that
can meaningfully be added together15 . In fact one aspect of the evolution of the field concept, and
vector and tensor notation, of classical electromagnetic theory was the devising of a formalism in
which “Add Effects” was more or less “built-in”, as is especially exemplified by the “principle of
superimposition” for fields. Likewise “Add Effects” is explicit in various additivity rules and implicit
in the formalism of all those theories of physics characterised as linear. It is an enlightening struggle to
make an “Add Effects” foray at the Dragon Milko.

In “Layman’ s Physics” it’ s the cream and milk minus cream (which we glibly term water) which
“cause” the pressure at the base of a milk bottle. A little more formally, if the effect is additive, one
would write

p    = pcream  + pwater

and a like expression for the base pressure after separation, p’  . Now the total amount of cream is
unchanged after separation, so that if quantity alone determines pressure, then

pcream  = p’ cream (false !)

and likewise

pwater = p’ water (false !)

leading to the canonical wrong answer, p = p’ . A more recondite, and equally false, version of this
argument recalls that the total pressure of a gas mixture is the sum of the partial pressures of the
components, so that on (mis)treating the components of milk as gases, one deduces a strict additivity of
effect as above.

The obvious bug in the above discussion is that distribution must be taken into account. For the
moment, we simplify the discussion by only dealing with the regular shaped “mathematician’ s milk
bottle”. Then in accord with “Add Effects”, one envisages milk as the superposition of cream of
density  =     ρ1V 1 /(V 1  + V2 ) and of milk minus cream = water of density  ρ2V 2 /(V 1  +  V2 ), both
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cream and water being dispersed throughout the total volume V 1  +  V2 . Then the two additive
components of pressure before separation are:

pcream  =   ρ1V 1 (V 1  + V2 )-1 (h 1  + h2)g

pwater =   ρ2V 2 (V 1  + V2 )-1 (h 1  + h2)g

So that by “Add Effects”

p   = pcream   + pwater    =   ( ρ1V 1  +  ρ2V 2 ) (V 1  + V2 )-1 (h 1  + h2)g
=  =   (ρ (h 1  + h2)g

Fig (x) “Add Effects” decomposition applied to the “mathematician’ s milk bottle”.

The heuristic has worked beautifully for milk. However, when we turn to calculate via “Add Effects”
the base pressure after separation, we run into the super bug mentioned in Section 1. To implement
“Add Effects” one needs to imagine that (as is shown in Fig (x) ), a “pressure ether” of zero density
that fills up empty spaces, and transmits pressure so that one can calculate the new component
pressures as:

p’ cream   =  ρ1 h 1 g

p’ water   =  ρ2 h 2 g

Thus

pcream   - p’ cream =  - ρ1 (V 1  + V2 )-1 (V 2 h 1   -  V 1h 2 )

pmilk  - p’ milk      =   ρ2 (V 1  + V2 )-1 (V 2 h 1   -  V 1h 2 )
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If V 1 =   h1A 1        and    V  2 =   h2A 2

and the simulation of a milk bottle entails     A  1    <    A  2

Then (V 2 h 1   -  V 1h 2 =   h1h2 (A 2  -  A 1)     > 0

Thus as water is denser than cream, we have

p  –  p’    =   (pcream  - p’ cream)   +  (pwater –  p’ water)
  =     (ρ2  - ρ1 ) (V 1  + V2 )-1 (V 2 h 1   -  V  1h 2 )  > 0

Thus, for a “mathematical milk bottle”, we have established that the pressure near the base, p
drops to the value p’  after separation of cream. Presentation of this more sophisticated derivation to
students leaves for them the more general puzzle of extending this derivation to milk bottles of
conventional shape. In fact the argument given above applies at once to a conventional bottle provided
cream/milk volumes and vertical heights satisfy the inequality
(V 2 h 1   -  V 1h 2 )  > 0
i.e.,

V 2 /h 2   >  V 1/h 1

which is a requirement on the average cross-sectional areas.

Subtract Effects

This heuristic  is conceived by this writer as a variant of “Add Effects” . A “Subtract-Effects”
motivated calculation of the differences in base pressure, p-p’ , is outlined in visual terms in Fig (xi).
Now in this figure we have not introduced a “pressure-ether” - - but the lower volume V 2 of the
mathematical milk bottle in the right-hand side case contains a liquid of negative density!

                         p                                                      p’                                                 p  –  p  ‘

Fig (xi) Schematic outline of “Subtract Effects” motivated attack on Milko.

p  –  p’    =   (ρ - ρ1 ) 2 h 1 g  +  (ρ - ρ2 ) h 2 g
It is then clear that p > p’  provided that the (positive) contribution to base pressure from a liquid of
density (ρ - ρ1) in the narrow upper volume exceeds the contribution of liquid of density - (ρ - ρ2) in the
lower volume.
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Process

 “Process” is a heuristic of great power which involves the notion of a state. From the “Process”
viewpoint, a problem is conceived as devolving on a transformation, like so

(State A)    à   (State B)

or more briefly, A à B . In terms of the parameters that define a state, the transformation is

A à B    ⇔      (a1 , a2, a3, a4, a5, a6  .  .  .) à (b1 , b2, b3, b4, b5, b6  .  .  .)

The key problem solving idea of “Process” is to devise some possibly  fictitious state X, for which the
transformation rules for

A à X ; X à B
are well established, so that one can readily compute the transformation of parameters,

 (a1 , a2, a3, a4, a5, a6  .  .  .) à (x1 , x2, x3, x4, x5, x6  .  .  .) à (b1 , b2, b3, b4, b5, b6  .  .  .)
What has presented above is a very sophisticated and formal description of “Process”. In fact the
present writer first identified this heuristic as being potent in thermodynamics and special relativity and
conceived of this problem solving idea as being used and developed only by advanced students.
However, in September 1974, I was flabbergasted to observe a five year old child, Leo, use this same
heuristic. At the conclusion of a classic Piagetian interview described in the Appendix, Leo was asked:

“How would you explain to another child why the Pepsi (poured from a squat beaker) rises so
high after pouring (into a narrow cylinder)?

Leo thought intently for a few seconds, then answered,
“The sides are pushing the Pepsi up”

Leo placed his hands apart and forward, the brought them together as he said this. It was clear in
context that he had invented a fictitious

State X Pepsi in  the tall cylinder had the same diameter as the (squat) beaker
In State X the cylinder  and would hold its aliquot of Pepsi at the same level as that in the beaker.
Leo’ s explanation entailed the transformation from

State A: Pepsi in squat beaker
to the final state

State B: Pepsi in tall narrow cylinder
via the fictitious state X.

To return to a “Process” analysis of the Dragon Milko. where one perceives this Dragon as involving a
transformation from

State A: Homogenous milk in milk bottle.
to

State B: Stratified milk in milk bottle.
One can’ t compute the alteration in base pressure - - i.e., pA  - pB  =  p  –  p’  directly - - after all, this is
the problem of this Dragon. Yet if the neck of the milk bottle was rubber, or was hinged somehow, and
the bottle transformed into a cylinder it would be easy, in fact trivial, to compute the base pressure
change after stratification by reference to the states:

State X: Homogenous milk in cylinder
State Y:  Stratified milk in cylinder

In a cylinder the only vertical forces acting on the fluid contents (of total weight W) are gravity and the
base pressure acting over the area A, so that

pX  =  pY

The additional base pressure in State A compared to State X is due to an additional  height D of milk so
that under the transformation

A à X :        pA  -   pX   =  p  -  W/A   =   Dρg
Likewise
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Y à B :        pY  -   pB  =  W/A – p’   =   Dρ1g
Hence

p  -  p’   = pA  -   pB   =   D(ρ - ρ1)g
which is positive as cream density  ρ1 is less than the density ρ1 of milk. This “Process” argument is
illustrated in Fig (xii)

Its worth noting an unsuccessful “Process” motivated attack on Milko that a number of students initiate.
Suppose the milk bottle is connected near its base with a vertical cylinder, as drawn in Fig (xiii) below.
The level of homogenous milk is equal in the two branches at the initial state. Subsequently the milk
stratifies; however there are unequal lengths of strata in the two connected vessels, and there is no
convenient intermediate state.

Fig (xiii) Sketch for an unsuccessful “Process” foray at Milko
Its clear that students attacking Milko in this way recognise that in a (closed) cylinder
pressure will be unchanged after separation, so that the cylinder holds something like
our States X and Y. However the application of “Process” is essentially incomplete, as
there is no actual transformation between initial state and X, and final state and Y.
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(c) Harvey A. Cohen, 1974-5
Fig (xiv) The Dragon Jugglo reproduced with permission from Harvey A. Cohen, "A
Dragon Hunter's Box", Hanging Lake Press, Warrandyte, Victoria 3113, Australia
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CONCLUSION

We have shown how a diversity of  “solutions” to the Dragons Milko and Jugglo depend on just a
limited number of problem solving schemata called heuristics. The core idea of these heuristics is
probably derived  in childhood, but during intellectual development a coterie of debug routines,
caveats, flags, problem transformation and reduction ideas become attached to each heuristics .
Knowledge of very specific skills termed algorithms is also linked with particular heuristics .

Consistent with this analysis, a teaching stratagem is outlined that aims to promote student self-
awareness of the processes involved in their own intellectual development, and of the evolutionary
character of the formulation of the solution to a formidable problem. That is, the teaching stratagem
aims to teach how to find solutions rather than to teach solutions., by exposing students to a model for
problem solving whilst at the same time exposing them to challenging problems, in particular Dragons.
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Appendix

This paper as a whole has been concerned with the development of problem solving ability in physics.
However the teaching stratagem I espouse is based on a theoretical model of intellectual development
that has far greater gambit. In this Appendix the model is applied to give an explication of certain
aspects of the intellectual development of children, by showing how it interprets some of the data
obtained in the “protocols’  (transcripts) of three Piagetian experiments.

The Egg and Egg Cup Experiment
`
In order to answer questions as to whether some quantity is greater or less than another, the typical
child uses such heuristics as:

H1: Greater extent means more.
H2: Sparseness (greater gaps between elements) means less.
H3: Counting tells you if more or less.

The heuristic H3 is only suitable for very small sets because of a (young) child’ s limited skill at
counting. The sorts of situations where a typical child of five years gives the correct answer to
questions about quantity are shown in Fig (xvi), A being what we term a paradigm for H1, while B
gives two paradigms for H2. It is a notable about these paradigms that only one heuristic is applicable
to each. But what happens if a situation is presented to which both heuristics are applicable, and give
conflicting conclusions? In one of the classic “conservation” experiments of Jean Piaget, the egg-cup
experiment, children in the 4-7 years age group are set such a clash in their heuristics. As indicated in
Fig (xviC) if such children are shown a line of eggs in egg-cups, where the extent and sparseness of
both the eggs and the egg-cups are the same, then in answer to the question “Are there more eggs or
more egg cups?” the typical child (4 – 7 years) answers “no the same.” However, if the set-up stays in
full view of the child while the eggs are removed from the egg cups and spread out in a longer line than
the line of the cups – then the situation is one in which H1 and H2 give conflicting assessments to the
repeated question. However, for the young child, H1 is in some way tagged as primary or more
important - - for, as indicated below, H1 describes a great range of situations where such evaluations
are sought. So the typical five year old will now reply, “More eggs”. In contrast the seven year old will
give the adult answer “Of course not.” What distinguishes the seven year old from the typical five year
old? Possibly the seven year old has acquired a heuristic such as:

H4: Relationships “more than” or ‘less than” remain true  if items are moved but not
removed

However, the mere addition of H4 to a child’ s repertoire won’ t necessarily lead to the correct answer
to the repeated question of the egg and egg-cup experiment. What is needed is some caveat like

H5: In case of conflict between H1 and H2 use H4

The addition of these - - or  somesuch - - heuristics to the heuristic that holds the collection H1, H2, etc
of the typical five year old child is an instance of what I term the debugging of heuristics.

Another Piagetian ‘Conservation” Experiment

Here is the protocol of  classic Piagetian “conservation” experiment, conducted by one of Piaget and
Inhalder’ s collaborators, Olivier de Marcellus, in Lexington, Massachusetts in September, 1974.

A five year old child Rob [name altered] was shown two vessels. One, a measuring cylinder, was tall
and narrow in cross-section, the other was a squat beaker containing a dark liquid termed “Pepsi”. Rob
was asked to what height he anticipated the “Pepsi” poured from the beaker would fill the narrow
cylinder.

Rob pointed to a level on the cylinder at the same height *(1) as the top level of the “Pepsi” in the squat
vessel. The “Pepsi” was poured into the cylinder. The level in the narrow cylinder was about three
times higher than that predicted by Rob. Rob registered much astonishment, followed by a traditiona;
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facial expression for grasping a tricky idea. Rob was asked: “Is these more Pepsi now?”. Rob replied,
“No! It’ s just the same .  .  .  . it only looks more”. *(2).

Rob was then asked how he would explain to another child how it was that “Pepsi” was so high in the
(narrow) cylinder. Rob pondered a moment - - then placed his hands about 20 centimeters apart in front
of him, then steadily drew his hands together while saying, “The sides are pushing the Pepsi up” *(3).
Rob’ s responses *(1), *(2), *(3) of the above protocol, merit these comments:

*(1) Rob’ s expectation opf the height of the new (narrow) Pepsi column conforms to the
heuristic H1 of the preceding experiment. The anticipated extent of the new Pepsi column -
- its height - - was anticipated to be unchanged.

*(2) Rob opined a caveat to be referred to as H6 which he probably only recently learnt to
associate with the heuristic H1.

H6: Sometimes it only looks more.

• Rob’ s response “The same” was undoubtedly guided by heuristic H4 or some similar
historical heuristic. Rob was clearly on “the cusp” of becoming a conserver in Piagetian terms.

*(3) Rob had formulated an explanation in terms of the heuristic Process - - the same heuristic,
which somewhat elaborated was used to snare the Dragon Milko in Section 2. Rob was
considering a fictitious state of the cylinder - - presumably one in which the cross-section
was the same as in the squat beaker. In the fictitious state, the Pepsi would be at the same
level as in the squat beaker. But on bringing the sides closer together - - as indicated by
Rob’ s hand movement - - the Pepsi level would rise.

Islands Experiment

The following incident took place within the context of a very extensive Piagetian experiment,
“Islands”, conducted by Seymour Papert.

A five year old child was asked to count the thirty six (2cm x 2cm x2cm) cubes arranged as a
rectangular prism which was 8cm x 6cm x 6cm in size. Her algorithm was transparent, as she traced
her finger row by row along the front face, and proceeded to likewise count blocks on other faces of the
prism. She concluded there were 30 cubes in the prism. She was asked, “How did you do it ? If another
child wanted to count the blocks, what would you tell her ?” The child replied, “Don’ t count the side
[=edge] ones twice”. The child failed to say that her basic method was the use of H3 in systematically
tracing her finger along the faces. – and had described her procedure in terms of the bug in that method
of which she was now very aware. (Of course her counting failed to count the inner blocks).

The point being made is that in problem solving us,  the solver may often take for granted the overall
heuristic  , and  lay emphasis on aspects of the heuristic that required refining or debugging. For
instance, in applying the heuristic  “Add Effects” to Milko in Section 2, a rather bizarre artifact, a
pressure transmitting ether had to be introduced for this heuristic to succeed. Yet it would be patently
misleading to characterize this solution as the “The Pressure-Ether Model” for the Milko Dragon.

Interpretation of “Conservation” in terms of Heuristic Frames

In describing above some classic Piagetian “Conservation” experiments16 we have noted the heuristics
manifestly utilized – and in some instances verbally expressed by children in the five to seven years
age group. Perhaps we should note that it is fairly novel to attempt to use the protocols of such
experiments to determine the heuristic repertoire of a child: such a discussion was first given by
Seymour Papert17. The evidence of these and other protocols suggest that a child does not mature by
discarding the “non-conserving” heuristics and learning a more precise “conserving” heuristic: rather to
the prototype heuristic “To tell if more - - look” are added further structural elements - - other
heuristics - - the whole collection of heuristics being closely linked, and heuristics relating the various
elements are part of the whole. Table     II shows how some of the heuristics discussed above slot into
the heuristic which is called “Look – More”.
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Fig (xvi) Figures relating to “conservation” protocols. See Text

TABLE II

THE ANATOMY OF THE HEURISTIC “LOOK-MORE”

COMPONENT SPECIFICATION
Core Heuristic “To tell if more – look”
Problem Reduction H1: “Greater extent means more”
Devices and Algorithm H2:  “Sparseness means less”
Selector
Debug Routines “Check H1 and H2 for consistency”

Demons H5: “In case of conflict between H1 and H2,
use an historical heuristic.
H6: “Sometimes it only looks more”
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The heuristic detailed in Table II is similar to a schema proposed by Minsky and Papert18. The young
child has available the core heuristic of this frame - - the idea that visual observation can be used to
determine quantity - - plus H1 and possibly H2. Of course to a young child quantity means capacity to
satisfy hunger or maybe number of bites to consume. One of the most endearing protocols I have
collected was of a non-conserving six year old, who was asked whether a flattened ball of dough
contained more than a spherical ball which had previously been adjudged “the dame amount”. The girl
guided by H1 claimed the flattened ball of dough contained more, and justified this answer by pointing
out that the round ball could be eaten in two bytes, where the flattened ball would take five bytes. The
older child - - the Conserver - - had added to these basic elements of a heuristic frame debug routines
and   and deons akin to those in the table. It is just that process of augmenting and editing a frame, such
as “Look – More” which is called in this paper the debugging of that heuristic.
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