The Gecko  is the most intriguing of Dragons. Colourful but bereft of eyelids, lacking claws, yet so provocative. Aristotle insisted that the gecko can run up and down a tree in any way, even with the head downwards. Its physics  how the gecko climbs walls and even across ceilings  is beyond Aristotle and Newton  and involves quantum physics. [ Not that such advanced physics is required to dissect and analyse my geckos.] When challenged by a gecko many try to bar this creature  but the more creative task is to "tame" [adjust] the gecko so as to transform it to something more familiar. The genus was properly first described in problemsolving terms by Imre Lakatos, hence the alternate nomenclaure Lakatosian Monster. 
Dragons are formidable problems, challenging, and yet solvable using little or even no algebra or calculus.
But their solutions requires one to use or develop genuine physical insight,
beyond that acquired in childhood. For more on dragons click here Eastern Water Dragon, in Sydney Harbour bush. 
In his classic work,
Proofs and Refutationas, Imre Lakatos explored how mathematics develops in practice.
He choose as his model for study the evolution of proofs published in
the mathematics literature, both in papers and texts,
of the proof of Euler's Formula, that relates
V + F  E = 2 This formula is very easily checked for the five platonic solids
and it works perfectly for familiar convex polyhedra. Latatos showed how with the discovery of various counterexamples  polyhedra for which Euler's Formula does not hold  the published "proofs" of Euler's Formula, evolved over time. These counterexamples were termed by Lakatos monsters. Lakatos delineated two major procedures for dealing with monsters:
Most striking of the monsters that Lakatos discussed were
[ Note the use of specific colours for each visible face of the monstrous dodecahedrons ] The original articles and the 1976 book by Lakatos, Proofs and Refutations are not freely available online. However this writer recommends for academic readers two online publications: ^{and} ^{An Examination of Counterexamples in Proofs and Refutations} ^{Jesse Lambe Formal Proofs and Refutations, PhD thesis, Stanford, 2009 } Now it must be said that while Lakatos was solely concerned with the historical development of proofs in pure mathematics. here his terminology has been applied by me to the description of problem solutions in qualitative physics.
In presenting this graphic Inducia Capillaria to a wide range of subjects I have added verbal reparté such as: One sees that the narrower the tube  the higher the water roses. Does that mean that for a thin enough tube water would spray out of the top of the tube? Or would water just dribble over the top of the tube? 
 
Summary
I apply Lakatos's terminology to qualitative physics to specify the 'standard' methods of dealing with monsters are
The Guide For The Perplexed a four page folio within the Dragon Hunter's Box, provides a guide to the Snaring  and Taming  of Dragons.
