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Summary The radiative correction, to order e2, to the photon propagator
in the Lee and Yang theory of charged spin one bosons, is calculated in a
dispersion-theoretic manner. Some general aspects of the ξ-limiting formal-
ism are discussed. A useful matrix treatment of Lorentz tensors is presented in
an Appendix

1 Introduction

The theory of charged bosons of spin one devised by Lee and Yang(1) has, despite
its apparent weaknesses(2), not yet been supplanted, so that it is of interest to
perform a purely quantum electrodynamical calculation in this formalism(3).
To this end we herein present in Section 2 a dispersion-theoretic calculation of
the lowest order radiative correction to the photon propagator in the ξ-limiting
formalism. As anticipated, the derivative of the polarization for zero momentum
squared, viz Π(0), diverges as the parameter ξ → 0. In Section 3 we discuss
the value arrived and comment on a feature of the Lee and Yang theory that
seems to emerge from this calculation: namely that, unlike the ”good” theories
of charged spin zero and charged spin 1

2 there is no close correspondence between
the qualitative features of the c-number and of the second quantised theory.

In Appendix I we detail a useful matrix treatment of tensor quantities.

2 Calculation of Π′(0)

In the Lee and Yang theory of charged bosons of spin one (1) the charged particle
propagator is taken to be

SLYβα (p) = S1
βα(p) + S0

βα(p) 2.1

where
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S1
βα(p) = iN1

βα(p)/(p2 +M2
1 − iε) ; S0

βα(p) = iN0
βα(p)/(p2 +M2

0 − iε) (2.2)

M1 = m ; M0 = ξ
1
2m (2.3)

m being the mass of the spin one particle, while Lee and Yang specify that
ξ is to be small. The numerator terms are explicitly

N1
βα(p) = δβα + pβpα/m

2 ; N9
βα = pβpα/m

2 (2.4)

The 3-vertex of this theory has the value

eVµ;βα(p′′, p′) = −irδβα(p′′+p′)µ−ieδαµ(−κp′′+p′+κp′−ξp′′)β−ieδβµ(−κp′+p′′+κp′′−ξp′)α
(2.5)

a semi-colon being utilised to separate the photon index from the indices of the
incoming and outgoing charged particles. The 4-vertex does not occur in our
calculation.=, so that the corrected propagator is

Dµν(k) = −i(δµν/k2)− i(δµν − kµkν/k2)Π(k2) (2.6)

The Lehman-Kallen(4) dispersion relation for the vacuum polarization Π(k2)
is

Π(k2) =
−k2

π

∫ ∞
0

ds Im Π(−s)
s(s+ k2 − iε)

(2.7)

We note that Im Π(k2) = πk2ρ3(−k2) , where the spectral weight ρ3 would
be positive definite in a theory where Hilbert space is endowed with a positive
definite metric. In this calculation we determine

Π′(0) = [Lim k2 → 0] Π(k2)/k2 = − 1

π

∫ ∞
0

ds Im Π(−s)
s2

(2.9)

Because of the relatively large masses of the known vector mesons, a knowl-
edge of the value of Π′(0) is adequate for any investigation of possible spectro-
scopic detection of this component of vacuum polarization.

To order e2, the vacuum polarization is

Π = Π11 + Π01 + Π10 + Π00 (2.9)

where

Πab =
−i
3k2

e2

(2π)4

∫
d4p′d4p′′δ(k−p′+p′′)δµνTr[Sa(p′)Vµ(p′, p′′)Sb(p′′)Vν(p′′, p′)]

(2.10)
In this formula, and subsequently below, we have suppressed the charged par-
ticle indices, Sa(p), Vµ(p′, p′′) being regarded as 4x4 matrices, as detailed in
Appendices 1 and 2. The operator Tr involves taking the trace of these matrix
expressions.
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As states containing an odd number of spinless particles have negative norms,
the denomnators of both Sa(p) have the comon form (p2 + M2

a − iε); we can
therefore at once apply the analysis of Cutkosky (5) to determine the jump
discontinuity across the branch cuts of each Πab(k2), the branch points being
at the Landau6 position k2 = −(Ma +Mb)

2. On making the replacement

(p2 +M2
a − iε)−1 → 2πiδp[p

2 +M2
a ] (2, 11)

where the subscript p on the delta function means that only the proper root is
to be taken, the branch-cut discontinuity is found to be

2iImΠab(k) = − ie

12π2k2

∫
dp′′ p′ dp′′ δ(k−p′+p′′)δp[p

′2 +M2
a ]δp[p

′′2 +M2
b ]Trab

(2.12)
Thus

Im Πab(k) =
−e2m2

48πk2
fab(k) Trabθ[−k2 − (Ma +Mb)

2] (2.13)

where

fab(k2) = [1 + 2
(M2

a +M2
b )

k2
+ (

M2
a −M2

b

k2
)2]

1
2 (2.14)

and

Trab(k2) = m−2 Tr[Na(p′, p′′)M b(p′′)Vµ(p′′, p′)] (2.15a)

the trace, i.e., sum over vector indices, being evaluated on the mass-shell

k = p′ − p′′ , p′2 +M2
a = 0 , p′′2 +M2

b = 0 (2.15b)

The Trab(k2) are evaluated in Appendix II, where it is found that

Tr11(m2x) =
1

4
κ2x3 − (1 + 3κ)x2 (2.16)

and

Tr00(m2x) =
1

4
κ2x3 + (κ2ξ−1 − κ)x2 + (−4κξ−1 + 1)x+ 4ξ−1 (2.17)

The expression for TR01 is rather lengthy and has been placed at the end of
Appendix II.

We note that Im Π11(k) has exactly the same value as is given in the usual
”unrenormalisable” theory of charged particles of spin one, mass m, anomalous
moment κ [Lee and Yang(1) proved that for κ 6= 0 the Dyson-Wick canonical
formalism leads to additional non-covariant vertices and hence further divergent
terms]. Likewise, for κ = 0 , Im Π00(k) has exactly the magnitude and the usual
(-) sign of the contribution to vacuum polarization ascribable to charged spin
zero bosons of mass M0 . On the other hand Im Π01(k) is positive, and this is
the counter term which leads to a convergent theory. The asymptotic value of
Im Π(k) may be readily found: it is negative and constant.

3



Im Π(k) ≈ −e
2

48π
[3(1−κ2]ξ−1− 5− 12κ− 3κ2] as ξ−1m2 << −k2 →∞ (2.18)

It follows, as anticipated from crude counting of powers of momentum in equa-
tions (2.9), (2.10), that the dispersion integral of equation (2.7) does converge.
As however the various contributions Πab(k2) to Π(k2) do not separately con-
verge, we find it convenient to write

Π̂′(0) = [limλ→ 0]
e2

48π2m2
[Π̂11(λ) + 2Π̂01(λ) + Π̂00(λ)] (2.19)

where

Πab(λ) = −m4

∫ M2
0λ

−1

(Ma+Mb)2

dS

S3
fab(−S)Trab(−S) (2.20)

These elementary integrals are readily evaluated. One takes first the limit λ→ 0,
and subsequently takes ξ small to get

Π̂11(λ) =
1

4
κ2ξ−1λ−1− (1+3κ− 1

2
κ2)logλ− (1+3κ− 1

2
κ2)logξ− 71

30
−8κ− 7

6
κ2

(2.21)

Π̂01(λ) = −1

2
κ2ξ−1λ−1−(

3

2
κ2ξ−1−1−4κ+

1

2
κ2) logλ−3

4
κ2ξ−1+

11

6
+

16

3
κ+

23

12
κ2

(2.22)

Π̂00(λ) =
1

4
κ2ξ−1λ−1 + (

3

2
κ2ξ−1 − κ)logλ+

3

2
κ2ξ−1 − 8

3
κ (2.23)

So for all small ξ the Lee and Yang theory predicts that the derivative of the
vacuum polarization on the light cone shall be

Π′(0) =
e2

48π2m2

(
3

4
κ2ξ−1 + (1 + 3κ− 1

2
κ2)logξ−1 − 16

15
− 16

3
κ− 37

12
κ2
)

(2.24)

3 Conclusions

It behoves us to first contrast this calculation with that undertaken by Beg(7).
Beg cut off the dispersion integral at the thresh-hold where the metric in Hilbert
space ceases to be positive definite for meson states of zero total charge, k2 =
−(M0 +M1)2 : i.e., he wrote, without adducing any justification,

Π′(0)BEG = −1Π

∫ M+M1)
2

4m2

dS

s2
Im Π(−S) (3.1)
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Thence

Π′(0)BEQ =
e2

48π2m2
x

1

4
κ2ξ−1 + less singular terms, κ 6= 0

=
e2

48π2m2
x

1

4
κ2ξ−1 + finite terms, κ = 0 (3.2)

If one accepts the conjecture by Lee(3) that the most singular parts of higher
order graphs will serve to cancel the divergences in lower order, it follows that
for κ = 0 an additive factor of the form log(ξ/α) will appear to cancel the log
ξ−1 divergence. Hence for κ = 0 one gets the explicit expression

Π′(0) =
1

m2

αlogα

12π
+

1

m2
O(α) (3.3)

where the fine structure constant α = e2

4π . However for κ 6= 0 this conjecture
fails to lead to any definite numerical prediction.

We refer the reader to Beg’s paper (7) for a short disussion of possible ex-
perimental measurement of the vacuum polarization.

We conclude by presenting an interpretive criticim of the Lee and Yang
theory of charged spin one. The field equations deducible from the Lagrangian
density utilised in this theory are

ξDνDρφρ +DµGµν −m2φν + ieκφµFµν = 0 (3.4)

where
Gµν = Dµφν −Dνφµ ; Dµ = ∂µ − ieAµ (3.5)

contracting with Dν and using the relation

DµDν −DνDµ = −ieFµν (3.6)

gives

ξD2Dρφρ −m2Dνφν = − ie
2

(κ− 1)FµνGµν (3.7)

We write
φµ = φ1µ + φ0µ (3.8)

defining
m2φ0µ = ξDµDρφρ (3.9)

and setting
κ = 1 (3.10)

Then
DµDνφ

0
ν −M2

0φ
0
µ = 0 (3.11)

Defining
G1
µν = Dµφ

1
ν −DνΦ1

µ 3.12
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we find that
DµG

1
µν −m2φ1ν + ieFµνφ

1
µ = 0 (3.13)

This equation implies
Dµφ

1
µ (3.14)

The identification of φ0µ as the spin zero part of φµ, and φ1µ as the spin one

part is thus unambiguous for κ = +1.(8) It is also seen that for κ = +1 the
c-number Lagrangian density describes a decoupled system wherein there is no
direct interaction of the form

(spin one) → (photon) + ( spin zero) (3.15)

It follows that were the second quantized theory to properly reproduce this
qualitative feature of the c-number theory for κ = 1, then one should find
that the contribution to Im Π(k2) associated with the process (3.15) should
vanish to order e2, though perhaps it could be non-zero to higher order of e as
a consequence of some higher order effect. However an inspection of Table I
shows that

Tr01 6= 0 , κ = 1 (3.16)

so that the second quantised theory fails to correspond in a simple manner with
the c-number theory. On the other hand, in the usual Q.E.D. a parallel situation
occurs in the scattering of light by light: this process does not occur in vacuo in
the c-number theory , and so appears in the q-number theory only in orders ≥ 4;
i.e. in the theory of charged spin 1

2 the c-number and the q-number theories
maintain the same qualitative features in lower order calculations. We therefore
regard this defect of the Lee and Yang theory as being quite serious: in another
paper (12) we attempt to devise a theory of spin one by paying less rigorous
attention to the canonical formalism but giving more regard to this principle of
correspondence.

Appendix I

In this Appendix we develop a novel matrix method for dealing with tensors.
The method relies on the well known properties of the Kemmer (9) algebra:

βµρν + βνρµ = βµδρν + βνδρµ A1.1)

A particular 10x10 irreducible representation of the algebra is given by Roman(10).
In this representation it is easy to demonstrate that the products βµν = βµβν
are of the form of the direct sum of a six 6x6 matrix and a 4x4 marix, the cor-
responding projection operators for the disjoint spaces being (3-M) and (M-2)
respectively, where(11)

M = βµβµ (A1.2)

It follows from A1.1 that

(3−M)βµ = βµ(M − 2) (A1.3)
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We call the 4x4 part of βµν β̂µν so that

(M − 2)βµν = O4x4β̂µν (direct sum) (AI.4)

β̂µν has components

[β̂µν ]βα = δµνββα − δµαδνβ (AI.5)

It is also convenient to define the 10x10 matrix

Hµν = βνµ − δµν (AI.7)

so that the corrsponding 4x4 matrix has components

[Ĥµν ]βα = −δαβδνα (AI.7)

The special virtue of this unusual procedure is that when we calculate the
traces which occur in the calculation of vacuum polarization we shall be evalu-
ating traces like

Trβ̂µν β̂ρσĤγδ = Tr(M − 2)βµνβρσHγδ = Tr(3−M0βνρσHγδβµ (AI.8)

These expressions may be readily reduced by using the the well-known prop-
erties of the usual Kemmer matrices.

For completeness we note the following traces deducible directly from (A1.7):

The attentive reader will see that the trace of an arbitrary number of ordi-
nary β matrices may be readily found by first determining the trace of products

Ĥµν , then of β̂µν .
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