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In elementary derivations of the quantization of azimuthal angular momentum 

the eigenfunction is determined to be exp(im), which is "oversensitive" to the 

rotation    + 2, unless m is an integer. In a recent paper Kerner 

examined the classical system of charge and magnetic pole, and expressed  

a vector constant of motion for the system, in terms of a physical angle to 

deduce a remarkable paradox. Kerner pointed out that  is "oversensitive" to  

+2 unless a certain charge quantization condition is met. Our 

explicandum of this paradox highlights the distinction between coordinates 

in classical and quantum physics. It is shown why the single-valuedness 

requirement on () is devoid of physical significance. We are finally led to 

examine the classical analog of the quantum mechanical argument that 

demonstrates the quantization of magnetic charge, to show that there is "no 

hope" of a classical quantization condition. 

1. INTRODUCTION 

In a recent paper Kerner
(1)

 has derived a remarkable result [Eq. (2) below]  

for the classical dynamical system comprising a point electron, of charge —e  

and mass m, in the spherically symmetric field B = px/r of a static monopole 
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of magnetic charge p. It is well known that for this system the ordinary 

angular momentum 1 = x X mv, where v is the electron velocity, is not a 

conserved vector, although the magnitude of 1, ms = |1|, and also v=|v| are 

constants of motion. However, the Poincare angular momentum
(2)

 

                                     L = x X mv  +   x /r (
1
) 

where  = ep, is a constant of motion.' 

The formula derived by Kerner
(1)

 is       

|L| =  (+1) |1| (2) 

where   is an integer or zero. If this formula of classical mechanics were 

valid, it would be of special theoretical interest. Dirac,
(4)

 Schwinger,
(5)

 and 

many others
(6

.
7)

s
2
 have shown that in quantum mechanics (QM) considerations 

of rotational invariance, to which some writers, notably Dirac,
(4)

 added 

gauge invariance requirements, lead to the determination that p is quantized. 

The significance of this QM result is threefold: (a) The quantization of . 

provides a paradigm example of an (almost) unique and predicted coupling 

constant. (b) The possible magnitude of the magnetic charge of monopoles is 

predicted. (c) The existence of monopoles would explain the observed 

quantization of electric charge. 

With regard to the QM problem, Hurst,
(6)

 Fierz,
(7)

 and others have 

emphasized the significance of the Poincare angular momentum L defined 

as
3
 

L =  x  X  (p  +  eA )  +  (x / r )  (
3
) 

where A is chosen so that, except along a string singularity, curl A = px/r
3
. 

The components of L commute with the Hamiltonian of this problem, and 

also satisfy the commutation rules of the SO(3) Lie algebra. Rotational 

covariance requires that the components of L be the generators of the SO(3) 

Lie group, so that one finds for quantum states
4
 

QM: || = integer/half—integer (4a) 

L
2
 =  l ( l  +  1 ) ,    l   =  ||+   (4b) 

1 The term involving  can be identified as the angular momentum of the electric and 

magnetic fields. Sec Ref. 8. 
2 An extensive bibliography is given in Ref. 3.  
3 Equation (3) is consistent with Eq. (1) in classical mechanics since mv = p + eA, where 

p is the dynamical variable canonically conjugate to the position coordinate x. In Ref. 1 
Kerner also determines potential-free conjugate variables, a problem that is irrelevant 

in the concerns of this note.  
4 There is as controversy ns In the precise specification of the QM quantization condition. 

Compare Ref. 4  with Ref. 5  See also Ref. 6. 

Kerner's classical formula (2) may be expressed in a form more suitable for 

comparison as 

Classical (Kerner):    ||  = {   (+2)/(+1)
2
}

1 / 2
|L| (5) 

In both Eq. (4) and Eq. (5),   is an integer or zero. Equation (5) certainly 

looks like a possible classical counterpart of Equation (4).  

2. KERNER'S PARADOX 

The argument given by Kerner
(1)

.
5
 to derive Eq. (2) involves the deter-

mination of a classical vector 

 =  R x  +  V v   +  S x X v (6) 

which is required to be a constant of the motion of an electron in the mono-

pole field. On differentiating (6) and using the equation of motion, one may 

write down three differential equations(
8)

 for the unknown scalar functions 

R, V, and S.
6
 A suitable parameter to label points on the orbit is given by , 

where 

sin  = x • v/rv (
7
) 

In terms of  the general solution for the coefficient of v in   is
7
 

V() = A[(cos )/cos ] B[(sin )/cos ] (8)  

where  = (1 +
2
/m

2
s

2
)
1/2

 .  The key point in the argument given in Ref. 1 is 

now reached: "... 11 is sensitive to an alteration of [] by a multiple of 2, i.e., 

to physically equivalent representations of the relative orientations of [x] 

and v. This oversensitivity is removed when [] is an integer." Thus 

Kerner deduces Eq. (2). 

However, Kerner's argument overlooks the physical meaning of the 

transformation                  +           which specifies a motion along the 

trajectory. Kerner's argument would be  

meaningful if there were two (possibly equivalent) points 1  , 2, on the 

5 For expository reasons our notation differs from that in Ref. 1 in some trivial ways. Note 

that we use the angle   rather than   = /2    used by Kerner, so that Eq. (II) is simplified. 

6There are certain algebraic errors in Eq. (7) of Ref. 1; these are corrected in Ref. 8. 
7 We note that  = 1/sin  where   is the half-angle of the cone on which the trajectory lies. 
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trajectory for which  1   2 = 2. However, the range of  on a trajectory 

is just . This is easily proven using the Poincare formula
(2)

 

x2    = v2 t2  +  d
2

 

in which t is the time, which is zero at the point of closest approach when 

x = d,
8
 with |d| = s/v. On differentiation of Eq. (9) one obtains 

sin  = vt/(v
2
t
2
  +  d

2
)

1/2 
(10) 

For completeness we briefly
(8)

 explain the nature of the vector II by expressing 

it in terms of the constant vector d. For definiteness we now specify that   

lies in the range -/2 to /2, so that the angle  appearing in Eq. (9) is the 

angle between the plane containing L and d and the plane containing L and 

x. One can show that
(8)

 

 = A’d + B’LXd  + C L (1 1) 

where in terms of the coefficients in Eq. (9), A' = Av
2
/s and B' = Bv

2/s|L|                    

while C is arbitrary. With reference to Kerner's argument, we note that if 

one replaced 0 by 0 + 27r, the effect is to alter the magnitude of A' and B'. 

3. THE "NO HOPE" THEOREM 

The following argument brings out the essential difference between the 

QM and the classical description of the electron-monopole system, and 

explains why there is "no hope" of a quantization condition akin to Eq. (2) 

in the classical problem. Our basic assumption is that a quantization condi-

tion for classical mechanics could only arise by an argument that is parallel 

to the QM proof of the quantization of We identify the key feature in the 

various QM arguments as the requirement of rotational covariance and 

shall show that the peculiar difficulties that arise in QM in fulfilling this 

requirement are absent in the classical theory. 

In QM rotational covariance requires the existence of the operator 

U = exp(iL•n) for all unit vectors n and real angles 0. More formally, 

one requires the integrability of the SO(3) Lie algebra satisfied by the com-

ponents of L, so that there is a set of analytic vectors for L that is dense in 

the Hilbert space in which state vectors lie.
9
 But due to the presence of the 

8 The vector d is analogous to the classic Runge—Lenz vector, which also points from the 
force center to the closest point of the orbit.  

" In the detailed discussion given by Hurst in Ref, 6 it is shown that for the monopole  po-

tential used by Dirac, the l ,ie algebra of II, is integrable if , and only if, 121. is an integer. 

singular vector potential A in L, the exponent of U is an unbounded operator, 

and it follows that in general the transformation U does not exist, and some 

special requirement must be met if the algebra is to be integrable.
(9)

 

Let us now turn to the classical case. Here, if L is taken as the generator 

of rotations, and 0 is any dynamical variable, then under a rotation by  
about the direction 

0(x, p)  exp { nj [
   

   
 
 

   
  
   

   
 
 

   
] } 0(x, p)                             

 (12) 

Expressing L in terms of p and x, one sees that just as in the quantum case, 

the exponent involves the singular potential A, and appears to be highly 

singular. But the exponential operator is to be applied only to dynamical 

variables defined on the trajectory, on which p + eA = mv, so the apparent 

singularity is totally innocuous in the classical case. 

4. COMMENTS AND DISCUSSION 

To a contemporary physicist the argument used by Kerner
(1)

 in the 

derivation of his classical quantization rule for the charge-pole system is 

familiar. It closely resembles an elementary derivation of the spectrum of 

azimuthal angular momentum, such as is to be found in many texts of 

quantum theory. Such a derivation is the following. 

In the coordinate picture of quantum mechanics the momentum 

operator is p = —iħ, and the position operator is simply x, so 

tha t  t he  z  co mp o ne nt  o f  the  a ng ula r  mo me nt u m l=  xX p  

i s  l z  =  —iħ/,  wh e r e    i s  t h e  a z i mu t h a l  a n g l e  

me a s u r e d  about the z axis. The eigenfunctions of l z   are 

exp(im). But  and   + 2 refer to the same point, so that if 

the wave function is to be single valued, the only permitted 

values for m are integer or zero, i.e., the eigenvalues of 1z are mħ, 

where m is a (positive or negative) integer (or zero). 

This quantum mechanical argument as presented contains the bare 

bones of more polished expositions. What one can say in distinguishing this 

discussion from the derivation of Kerner is that the wave function is a field, 

whereas the classical functions are defined on a line—the trajectory—so 

that the significance of a coordinate increment such as   + is different 

in the two cases. This point comes out rather more clearly in the proof of' 

10 This equation can be derived by integrating the conventional Poisson bracket      

expression for an infinitestimal increment. 
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our "no-hope" theorem, where it is the restriction of classical coordinates 

to a trajectory that enforces the conclusion. 

In Ref. 1 Kerner termed the derived quantization rule "unaccountable," 

which appears to be an imputation of the conclusion and implicitly of the 

physical meaningfulness (and soundness) of the derivation. Thus his deriva-

tion may properly be termed a paradox, an extraordinary dynamical argu-

ment, whose elucidation adds to our comprehension of the distinctions 

between classical and quantum physics. 
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