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Introduction 

Many advances have been made in machine speech and vision processing through modelling. 

In speech processing technology we find that many of the advances have been made possible 

by accurate modelling of the human speech production, the speech sound wave ch aracteristics, 

and of the receptive mechanisms of the human ear ( see for e.g. [1]). Much of the progress 

made in machine vision has stemmed from modelling of the properties of surfaces, their 

projections, and of various lighting conditions; as well as mod elling of the human visual 

system itself [2]. Indeed, similar models are often used by those working in both computer 

graphics and computer vision [3] [4]: these being in some sense analogous to speech production 

and speech recognition. 

The majority of techniques used in vision for texture recognition or discrimination model 

the texture itself rather than the human visual system. This paper first briefly surveys these 

approaches before considering how one can relate these models more clos ely to the emerging 

model of low level human vision. In particular we describe our approach to unifying texture 

models, scale space analysis, and computational models of low level human vision.  

Textures 

It is well appreciated by the computer graphics community that uniformly shaded scenes are 

unnatural. Real life scenes are highly textured and non-uniformly illuminated 1, and textured 

scenes give important visual information including depth cues [6]. The graphics artist tries to 

improve their pictures by including texture; the computer vision researcher tries to improve 

the performance of a system by developing methods of texture discrimination. The purpose 

of this section is not to provide an exhaustive summary of these models, but rather to provide 

a background to our current research.  

Texture has proved to be a very difficult feature to model effectively. The initial attempts 

in this direct ion were the so cal led structural models of texture. In these, a texture is 

modelled as being a collection of primitives (rectangles, blobs or grains) and a rule or statistic 

describing the spatial distribution of these primitives. An indication of attempts at texture 

discrimination based on this type of approach can be found in [7]. In  this reference the 

size of blob primitives is estimated by taking a histogram of the difference of average pixel 

values in inner and outer boxes of different sizes. If the histogram contains modes then 

texture elements of those corresponding sizes are detected. No attempt was made to  extract 

information on the spatial distribution of these elements.  

*Cadet Research Scientist Dept. Defence. DRCS. 
1An illustrative collection of textures (used by many vision researchers for testing their discrimination 

procedures) can be found in Brodatz [5]  
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The other major group of texture models are the statistical models; a global characterisa tion 

of texture is attempted through statistical properties of the distribution of gray levels or 

elementary features such as line terminators or corners. Much research has been devoted to 

extracting the identity of the statistical models (and their parameters) that explain discrim -

ination of texture by humans [8]. Furthermore, the models proposed by t his research have 

been used to design computer vision algorithms and to devise methods of realistic artificial 

texture generation [9] [10]. The random models include those based on Markov and Gibbs 

Random Fields [11] [12] [13] [14] (15]. 

One perceptual feature of textured surfaces are that they are in some sense rough. At -

tempts to model surface roughness have included models based on surface curvature statistics 

[16]. A related method is that of Law's [17] using an energy measure based on the output of 

detectors designed to be sensitive to the presence of blobs and bars and ridges. This is an 

attempt to capture empirically the intuitive notion of surface roughness and will be discussed 

further in section 3. 

A theoretically attractive model of surface roughn ess is the fractal model. A true fractal 

surface or line is rough even when viewed at  any scale;  the level of detail  and roughness 

is repeated at each scale. A real life object can only display fractal nature over a range of 

scales. This range of scales is  limited even further by the inherent sampling and smoothing 

of the human optical system and capturing or display devices. Thus a fractal model is only 

approximate, and valid only over a range of scales. However, over this range, by the very 

nature of the model, the fractal nature is preserved and can be represented by a single 

statistic: the fractal dimension. Rather striking pictures of terrain have been rendered using 

this model - see Mandelbrot [18]. The traditional method of drawing fractals involves a 

recursive subdivision of a polygonal boundary (this is the linear analogue of the block faulting 

method or recursive triangular subdivision used for generation of terra in or texture - see [18] 

(19] [20]). Fractals can also be generated by fourier synthesis and by simulation of fractional 

Brownian motion [18] [19]. Fournier, Fussell, and Carpenter [19] use stochastic interpolation 

to render coastlines, and example given in this reference renders a coastline of Australia 

from 8 points (digitised from a map). A more novel method is the method of generation of 

attractor sets of iterated mappings [21] [22] [23].  

Many methods of extracting the fractal dimension have been propos ed [24], [25]. Pent-

land [25] shows that under the Lambertian model of surface reflectance the image is also 

fractal with the same fractal dimension as the surface from which the image arose. Whereas 

Mandelbrot merely remarks that the images derived from t his model appear quite natural, 

Pentland reports that actual measurements from real images support the model.  

2  Sca le -S pa ce  

The scale space model of visual perception is currently receiving much attention in vision 

research. In this approach, the image is transformed into a hierarchical representation based 

on the location of zeros or extrema of a quantity (e.g. image intensity, contour curvature, 

image intensity gradient) .  The idea is to try to capture the most sal ient features at each 

scale; allowing matching to be performed from coarser to fine level detail. Analysis of contour 

curvature will be given as an example.  

Analysis of contours in scale space enables segmentation of an image at salient points. 

Usually, these salient points are taken as corresponding to regions of local maxima/minima 

in curvature or zeros of curvature. The necessary smoothing to reduce detail in the coarser 

levels can be gaussian convolution or other low pass filtering operations. An exampl e of a 

scale space representation of the coastline of Australia is given in figure 1, following much 

the same procedure as outlined in [26]. The resulting "fingerprint representation" is  scale  
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and orientation independent (up to a shift  of axes). Other scale space representations can 

be found in [27] [28]. Segmentation of a curve in this manner (by choosing zeros of second 

derivative of curvature) enables the hierarchical segmentation, where segmentation points at 

high levels corresponds to coarse scale perceptual significance; proceeding downwards to ever 

finer detail and less perceptual significance.  

We suggest that the scale space representation can be unified with the work on fractal 

models in vision, by suggesting that the perceptual system extracts and stores a hierarchy 

of salient segmentation points, together with a measure of the roughness of the region in 

between these points. An i llustration of this can be made using the fractal interpol ation 

methods of [29]; this method allows one to specify a set of fixed points (that could perhaps 

mark the extreme convexities and concavities of a mountain range skyline at a given scale) 

and then interpolate with a set  fractal  roughness between these po ints.  We argue that  this 

is very similar to the way humans would draw a map of Australia, for example, plotting first 

such features as major capes and bights, and then interpolating with a curve of appropriate 

roughness between these perceptually salient points. 

3  D OOG Fi l t ers  a nd  Law s  Energy  M ea sures  

Young [30] recently proposed a method that is biologically plausible for the efficient imple -

mentation of oriented filters in the human visual system. These Difference Of Offset Gaussian 

(DOOG) operators are defined recursively in terms of the gaussian filter G(x):  

D0000  = G(x)  

DOOG i  = G(x + [Ix) — G(x — Az)  

D O O G 2  =  G ( x  2 d x )  2 G ( x )  +  G ( x  2 A x )  

The offsets dx are said to be of one standard deviation (a); and the coefficients are binomial. 

Such an offset scheme is shown to approximate the gaussian and its derivatives. Indeed, the 

various DOOGS can be related to the combination of gaussian filtering followed by scaled 

versions of the central difference approximations to differentiation. 

Having noted this similarity, we suggest that a natural extension is to construct DOOG 

filter versions of Laws texture measure filters [17]. This provides a natural way to incor -

porate scale into these measures. More than this, such a scheme is easily implemented in 

hardware, both artificial and biological. Many workers have suggested a Laplacian pyramid 

type architecture for vision systems [31]; here, the image is repeatedly low pass filtered and 

subsampled in going from one level to the next higher (larger scale and coarser detail).  If 

we low pass filter, then sub-sample at a distance of a, followed by Laws filters; then we 

effectively implement scaled versions corresponding to the DOOG paradigm. Such a scheme 

reflects the pyramid model of neural visual processing. Here, successive layers of neurons 

receive weighted signals from a neighbourhood below (a type of combined low pass filtering 

and sub-sampling), and lateral inhibition and facilitation by horizontal connections within a 

layer provides the appropriate mask weightings.  

Conclusion 

There is  no truly comprehensive model of vision. There are a number of successful models 

of limited aspects. Texture recognition has been attempt ed using a variety of models that  

are not well integrated with other models of perception. In our approach the scale -space 

model of perception is extended to incorporate aspects of fractal texture models, similarly,  
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the scale-space mechanism provides a natural framework for providing a sense of appropriate 

scale to  Laws texture measures.  This extension natural ly encompasses the DOOG model  

of neural vision processing. Thus, we are working towards an integrated set of m odels that 

incorporates models of objects, imaging, and perceptual processes.  
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