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Abstract 
A novel  scheme for developing, at low computational cost,  
neural-fuzzy classifiers based on large-scale, model-based 
exemplars is outlined. The new method extends the ap-
proach that  Bezdek applied to train a neural net (NN) So-
bel edge classifier by training the NN on the complete  
population of 3x3 binary image prototypes scored to fuzzy 
values by a classical operator. We  first show that, replac-
ing the  fuzzy values of edgeness of the exemplaers, by 
crisp defuzzified values vastly improved computational 
speed. A complexity analysis proves however that for op-
erators based on larger windows, the use of complete bi-
nary exemplars sets will be computationally intractable.  In 
the new scheme the NN classifier is trained over a hybrid 
set {   selected binary image exemplars with crisp outputs | 
sampled pixels within a realistic image, these pixels being 
crisply scored by use of a classic operator.}  We demon-
strate the scheme by deriving a 5x5 neural fuzzy Plessy 
operator,  far superior to the classic Plessy. 
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1.0   INTRODUCTION 
 Feature operators assign to the pixels in an image a label 
such as edgedness, (Plessy) cornerdness,  or (Moravec) 
Specialness [5]. Following normalisation, classical feature 
detectors produce a value in some range which represents 
the extent to which a pixel can be said to be a member of 
the class under consideration. If this fuzzy value is  thresh-
olded  the pixel is labeled crisply.  The threshold level must 
be set so as to eliminate all but the clearly defined feature 
points. The classic operators therefore work well on image 
regions where there is a high contrast, such as a very sharp 
edge transition. In fact, these operators work very well 
within those regions of an image which may be converted 
to a binary image by simple thresholding. The classic op-
erators perform poorly on low contrast features, such as an 
edge, which represents only a small grey scale jump. And 
classic operators are highly sensitive to image noise. 
Our objective here is to develop a neural-fuzzy approach to 
point pixel features which will offer useful insights into the 
construction of  more general feature detectors applicable 
to the analysis of medical and biological images. For all 
such notable features, whether point-pixel wise in machine 
vision, or of grosser character in biological images, there 
are always exemplars which can be readily scored; but how 

should one go from the class of exemplars to the general 
purpose operator? This paper extends an earlier attempt [1], 
by developing further the capability of arbitrary scale. 
Bezdek and collaborators, in several papers [3][4] showed 
how a neural-fuzzy extension of the 3x3 Sobel operator 
could be developed by training a neural net over a (equal-
weighted) population of all possible 3x3 binary windows, 
each examplar being scored by the classical Sobel operator. 
And most notably, Bezdek’s neural-fuzzy Sobel outper-
formed the classic operator in realistic images.  We attrib-
ute the limited success of this approach to the use of (bi-
nary) exemplars on which the classic operator (here the 
Sobel) gives ‘good’ values; but find there a definite defi-
ciencies that must be addressed to determine a methodol-
ogy applicable to features that relate to pixel values over 
larger (>3x3) windows. 
We extend the Bezdek  method through  the use  of  a train-
ing set comprising: (a) a set of binary image exemplars 
with crisp outputs; (b) a set of pixels taken from a window 
within a realistic image, these pixels being crisply scored 
by use of a classic operator.  Our method, which leads to 
relatively fast training, has the notable feature of being 
extensible over large windows and for any general window 
based feature detector. 

1.1 THE SOBEL EDGE DETECTOR 
In this section, we discuss NN counterparts of the classic 
Sobel edge detector, beginning with a discussion of the 
classic Sobel edge detector. The classic Sobel Edge detec-
tor [5][7] utilizes the two smoothed gradient operators: 
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in conjunction with a threshold T, so that an edge pixel is one for 
which: 

E =(1/6){ | DX(i,j) |  + | DY(i,j) |}  >  T 
Here we assume normalized pixel values in the range  

[0 .. 1.0]. The scaling factor of (1/6) is chosen so that the 
output of the Sobel operator is also in the range [0 .. 1.0]. 
For later reference, we call E "edgednesss". Applied to a 
binary image with pixel values of 0 and 1, the 3x3 Sobel 



operator returns one of 4 possible values 0, 1/3, 2/3 and 1.  
Standard texts give examples where the classic Sobel per-
forms well. 
In Fig 2, we give an example of failure of Sobel, applied to 
the Kosh image in Fig 1. Visually, the edges of the original 
Kosh image are quite apparent.  

 
Figure 1 . 316x500 Kosh image 

2.0 NEURAL NET FEATURE DETECTORS 
In general, a feature detector can be defined as a computa-
tional process which assigns a numeric label to each pixel 
in a colour or gray-scale image. The label specifies the 
presence or absence of a feature characteristic such as 
‘edgeness’, ‘cornerness’, ‘interesting’ etc.  We deal solely 
with window based techniques, where the pixel is classified 
based on the pixels in a small surrounding region. Each 
pixel in the image is thus classified with this ‘sliding win-
dow’ approach. Results are presented below for the Sobel 
operator.  
The simplest NN edge detector was that proposed by 
Weller [2] who intuitively scored a mere 20 examples of 
edge-situations in a 3x3 window, these 20 examples serv-
ing as the total training set for a feed-forward / back-
propagation (FF/BP) neural network. The approach of 
Weller ignores altogether the capabilities of the classic  
operators. 

A more contemporary approach was proposed by Bezdek 
and co-workers over several papers [3][4].  Bezdek’s ap-
proach combines the training of a FF/BP neural network 
with a labeling scheme based on fuzzy membership values. 
The key feature of the Bezdek approach is the use of a 
training set based on a square window in a binary image. 

 
Figure 2.  316x500 Kosh: Output of Sobel edge detector 
applied on luminance The original image has well de-

fined edges involving small changes in grayscale.  
 
2.1 BEZDEK'S NN COUNTERPART OF SOBEL 
The Sobel operator, applied to a binary window and with a 
suitable scaling factor, has four possible output values : 0, 
1/3, 2/3, 1. Bezdek took as a training set all possible 3x3 
binary windows, with the desired output for each example 
being scored by the Sobel operator. This led to a training 
set of 256 examples with four possible output values, 
which was used to train a FF/BP network.1 In Bezdek's 
scheme the edgeness, E, is considered as a fuzzy member-
ship value of the set of edge points. The neural net is then 
                                                                 
1 The neural networks used in the experiments described 
here were feed forward networks, trained by back-
propagation of errors, configured as follows:: 
 3x3 windows: 9:7:2:1 
               5x5 windows: 25:10:2:1 



trained to give the appropriate value of E for each window. 
The neural network, although trained on binary windows, 
is actually applied to a normalized grayscale image, with 
pixel values scaled so as to range from 0 to 1.0. The output 
of the trained NN ranges from 0.0 to 1.0 at any pixel, due 
to the sigmoid activation function ( Sigmoid function 1/(1 
+ ex)) of the output unit. Since the NN is applied to a gray-
scale image the output is not restricted to the four values of 
the binary case. A process of defuzzification, equivalent to 
the choice of a threshold for the classical Sobel, is then 
applied to the (single) output of the NN. 
 

 
Figure5. 316x500 Kosh:  Output of NN edge detector 

trained on Sobel edgedness, after defuzzification.  
 

2.2 Problems with Bezdek's methodology2 
Bezdek's approach is noteworthy in that it does in fact suc-
ceed in producing an excellent edge detector. The fully 
trained NN agrees with the Sobel operator on binary im-
ages, but has much greater power than Sobel in the detec-
tion of low contrast grayscale edges  (See Figs 2 and 6). 
Bezdek et al  also examined a related approach, using the 
Takagi-Sugeno fuzzy reasoning paradigm. There are, how-

                                                                 
2 This analysis extends the discussion presented in [1] 

ever, two basic problems with this approach which prevent 
the training of general feature point detectors.  
Bezdek’s method is not readily extensible to larger scales. 
For a 3x3 window the training set consists of 2^9 = 512 
proto-types, and training is readily achieved in a matter of 
minutes. If we extend the scale to a mere 5x5 window then 
using this method we have a training set of 2^25 = 33.55 x 
106 binary proto-types. Assuming training times are linear 
in the number of inputs we compute as follows: Training 
times for the 3x3 NN based operators take of the order of 
minutes, whereas for 4x4 the corresponding time would be 
of order of 2^7 = 128 minutes. But for a 5x5 operator train-
ing times would take of the order of 2^16 = 64K minutes = 
45 days. In fact the linearity is not reasonable, and combi-
natorial explosion would be far worse. 
The second problem arises when we attempt to train a NN 
on a finely partitioned output space. Bezdek’s approach to 
training a neural net for edge detection involved partition-
ing the output space of the training set into 4 levels -  0, 
0.33, 0.67, 1. The reason for this approach is to ensure that 
the neural networks output corresponds to a fuzzy member-
ship value between 0 and 1. Once again, this approach is 
not readily extensible to different scales or even to some 
different small scale feature detectors. In the case of the 
Sobel operator we have four discrete levels, but for a gen-
eral feature detector we may have many more. This training 
approach has three detrimental effects: a) Increased train-
ing times. b) Decreased sensitivity of final network. and c) 
More points returned with no increase in descriptive power. 
In section three we demonstrate these effects by compari-
son with a NN trained on crisp values. Training to fuzzy 
values ignores the fact that the final system will be applied 
not to a binary image, but to a gray scale image.  The out-
put level results from applying a sigmoid function to the 
weighted sum of inputs at the output unit. Clearly, any 
large inhibitory (negative) input will be mapped to zero, 
and any large positive value will be mapped to one. The 
intermediate values between 0 and 1 occur only when there 
is a degree of uncertainty as to the correct output, i.e. if the 
net input does not swing either to large negative or positive 
values. Training a network so that it must hover around 
these intermediate values results in more uncertainty during 
classification of gray level images.  
Training a network to output either a 0 or 1 when training 
on binary data allows the weight vectors to stabilize and 
saturate the sigmoids to clearly defined levels. When such a 
network is applied to a gray scale image, however, ambi-
guities in classification will result in the sigmoids entering 
this uncertain region once again. This is in fact the desired 
response. If we wish the network to output fuzzy member-
ship values, then these values should come as close as pos-
sible to 0 or 1 when we are completely certain that a pixel 
either does or does not belong to the fuzzy set. Membership 
values should stray into the gray area only when member-
ship level is uncertain. 



 

 
3.0 A NEW 3X3 NN SOBEL 
This section discusses a solution to the second problem 
outlined in Bezdek’s method. The strategy we propose in-
volves training to crisp values. Two methods are presented. 
In the first method we use all possible binary exemplars, so 
that non-crisp values have to be "defuzzified", assigned to 
values 0 or 1, using a threshold T = 0.5. The results for the 
Lena image in Fig’s 7, 8 and 9 are striking: Training on 
binary prototypes with crisp outputs has resulted in a 
reduction in the number of pixels required to represent the 
edge image. But the new NN operator has detected fea-
tures, such as the reflection of the top half of Lena's hat, 
which are missing in Fig 7. 

 
Figure 6. 256x256x8-bit Lena: Output of NN edge detec-
tor trained to duplicate "fuzzy" Sobel edgedness on 256 

binary proto-types. Number of edge pixels = 7770. 
 

Retaining only those exemplars in the training set for 
which a crisp decision is available results in greater sensi-
tivity and swifter training times. Figure 9 shows the results 
of applying a NN trained with this method to Lena. The top 
half of Lena’s hat is also picked up with this method, and 
the other edges show greater definition. 

 
Figure 7. 256x256x8-bit lena: output of nn edge detector 

trained to duplicate "de-fuzzified" sobel edgeness on 
256 binary proto-types. Number of edge pixels = 5895 

The improvement of the new approach is even more patent 
in comparing training times. To train over the 256 proto-
types, for fuzzy edgedness values, as used by Bezdek et al, 
30,000 passes through the data were required.  But for the 
"defuzzified" Sobel outputs, training required only 2000 
passes. Training on data for which a “crisp” decision was 
available further reduced the training time to a mere 500 
passes. It is important to note that the output values in each 
case have a similar distribution across the range [0.0 .. 1.0]. 
Effectively, this means that we can train a NN on crisp 
exemplars and still validly interpret the output as a fuzzy 
membership function of the feature class. Figure 10 shows 
the distribution of output values for figures 7 and 8. 

 

 
Figure 8. 256x256x8-bit Lena: Output of NN edge detec-
tor trained to duplicate Sobel edgeness on 40 “crisp” 

proto-types. Number of edge pixels = 6852 
 

4.0 INCREASING THE SCALE 
As we discussed above, it would not be possible on a con-
ventional workstation to train by the Bezdek method an 
operator based on large window sizes. The following pres-
ents a method of training an arbitrary feature detector at an 
arbitrary scale. We present as an example a Fuzzy-NN ana-
logue of the Plessey Operator for a 5x5 window.  
 

4.1 The Plessey Corner Finder 
Corner points are more difficult to define than edge points. 
Corner point techniques tend to find L-structures and 
points of high curvature, i.e. when an edge changes direc-
tion sharply that is a corner. Ideally a corner point detector 
should ignore isolated points and return only corners, but 
noisy images can be a problem with this class of tech-
niques. Corner detection attempts to locate points of high 
curvature in an image, returning strong results for L-
structures. Many different approaches have been taken to 
corner detection, ranging from heuristic techniques to tem-
plate based techniques to methods based on derivatives. [5] 
This paper presents NN counterparts to the Plessy corner 
finder. In this section we discuss the classic Plessey corner 



finder.The algorithm is given by Noble [5] a, using a (n*n) 
window slid over the entire image is as follows:: 
1> Find Ix  and Iy  using (n * n) first-difference approximations 
      to the partial derivative. 
2> Using a Gaussian smoothing kernel of standard    
     deviation σ , compute the  weighted average means  

     <I2
x >, < I2

y > and <IxIy > 
3> Evaluate the eigenvalues µ 1 and µ 2  of the matrix 
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4> compute the ‘cornerness’ Cp as the ratio:  

     Cp = Trace( A ) / Det( A ) 

          = ( <I2
x > + <I2

y > )/( <I2
x ><I2

y > - <IxIy >2 ) 
   4>  If  both  Cp  is small. µ 1 and µ 2 are both ‘large’ declare a 
corner. 

Noble [5] has shown that the Plessey operator is suitable 
only for L corners, as its behavior is unpredictable for 
higher order structures. Fig 10 shows the result of applying 
the Plessey operator to the Barb image ( Fig 9.) that  con-
tains both sharp corners and smoothly varying curves. 

 
Figure 9. 512x512x8-bit Barb 

The Plessey operator clearly misses some important fea-
tures, such as the mouth, the hairline and the right arm. 
Another problem of the Plessey operator is the number of 
pixels returned. Where a feature such as a corner can be 
represented by a single pixel, often the Plessey operator 
returns multiple pixels to represent a feature. That is to say 
that pixels neighboring a feature point are often returned as 
a feature point, leading to many small ‘clumps’. This is 
undesirable both in terms of efficiency of representation 
and accurate location of feature points. 
4.2 Fuzzy Plessey Operator 

The key problem is the construction of an appropriate train-
ing set. The approach chosen was to develop a hybrid train-
ing set consisting of data from two sources. The majority of 
the data was sampled from an image and scored by a fea-
ture detector. For the example presented here this consisted 
of a set of 5x5 windows at 1000 pixel locations (on a regu-
lar grid) within a 256x256x8-bit grayscale Lena image. 
Each of the windows within the set was scored using a 
normalized Plessey operator, and then thresholded to pro-
duce a “crisp” decision.  
For certain feature types, such as corners, the frequency of 
occurrence in an image is extremely low. Consequently, the 
data set produced by image sampling contains an over-
whelming majority of  negative examples. If this were the 
whole of the training set then  

 
Figure 10. 512x512 Barb: 

Output of 5x5 Plessey Operator. 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 11 . The 16  binary ‘corner’  exemplars used in 
the hybrid training of a neural Plessey operator com-

prised the four rotational variants of these four 5x5 re-
gions. 



the NN thus trained would simply classify every pixel as 
not a corner. The solution adopted was to include a selec-
tion of “hand-ranked” positive examples to balance the 
training set. The solution adopted was to include a selec-
tion of “hand-ranked” positive examples to balance the 
training set. (It is in this regard that the new method sup-
sedes the approach of [1]. 
In our example, 16 positive examples of corners were in-
cluded in the training set. The resulting “hybrid” training 
set was then used to train a FF/BP NN. The results of  ap-
plying this network to the barb image are shown in Fig 12. 
For the Barb image, the NN corner point detector offers a 
far more effective abstraction of the original Barb than the 
Plessey operator (Fig 10). . The Hybrid trained NN picks 
up many features which are simply missed by the Plessey 
operator, such as the books in the top left corner. 
The other noteworthy difference is the reduction or elimi-
nation of  pixel “clumping”. In Figure 10, most interesting 
points are marked by more than one pixel, often three or 
four. The resulting representation is far from efficient. In 
figure 12, we can see that the NN interesting point detector 
does not suffer from this problem. 

 
Figure 12.: 512x512x8-bit Barb : Output of NN corner-
point detector trained with hybrid training set consist-

ing of hand-ranked exemplars and Plessey scored 
samples from a realistic image. 

4.0 CONCLUSIONS 
The ability to generalise from supplied knowledge, and in 
some cases even modify an approach, is one of the often 
claimed strengths of neural networks. [6] Certainly, in this 
study, the fuzzy NN edge detector we developed from the 
Sobel is clearly superior to the classic Sobel edge detector. 
We derived our approach from that of Bezdek,[3][4] where 
neural networks are trained to replicate fuzzy valued out-
puts. In [1] two new ideas were developed for training to 
crisp outputs. The first involved de-fuzzifying the exem-
plars, resulting in far more rapid training times, increased 

sensitivity and a more powerful representation with fewer 
pixels required. The second idea involved retaining only 
those examples in the training set for which a crisp decision 
was clearly available and discarding the other examples. 
This approach resulted in even more rapid training times, 
with comparable representational power to the de-fuzzified 
approach.  
We found that the distribution of output values, in the 
range [0.0 .. 1.0], were similar for training both on fuzzy 
output values and on crisp values. Essentially, this means 
that an interpretation of the output as a fuzzy membership 
value of the feature set is equally valid in both cases. When 
we consider this in conjunction with the highlighted advan-
tages of training to crisp outputs, we believe there is a 
strong argument in favor of crisp valued training sets. 
In this paper, extending well beyond the discussion in [1] 
we  presented a method of generalizing to arbitrary scales 
and feature detectors. The example given was a hybrid neu-
ral-Plessey operator for the detection of corner points. The 
training set was composed of two parts. The first part was 
1000 5x5 windows taken from a realistic image (Lena), 
scored with the Plessey operator and thresholded. The sec-
ond part balanced the low frequency of corner points in an 
image and consisted of 25 hand-ranked corner templates. 
The superiority of this approach over the classical Plessey 
was clearly apparent (see Fig. 10 & 12), where the neural 
net analog of Plessey detected many critical features 
missed by the (classic) Plessey corner operator and did so 
with fewer pixels per feature. 
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