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The free-particle Dirac equation has two remarkable features: (1) It is linear in all four 
components of the energy-momentum Pfl" and also in the mass m. (2) For its solutions 
there are five distinct simple modes of the invariant scalar product in the momentum repre-
sentation. 

In this paper, a theorem presented by Case is generalized and used to obtain five classes 
'of transformations of the Dirac equation. Every transformation in a given class has two 
properties characteristic of· the class: (1) The linearity in a corresponding one of the five 
quantities PP ' m is maintained in the transformed equation. (In this way "Po-, "Pr, "P2-, "P3-
and "m-linear" forms of the Dirac equation are obtained.) (2) A corresponding mode of the 
invariant scalar product is preserved. Thus all five classes consist of canonical transforma
tions. 

Included amongst the "po-linear" forms are the Foldy-Wouthuysen-Tani equation, and 
the one commonly attributed to Cini and Touschek, together with· equations appropriate to 
limiting situations other than the non-relativistic and extreme relativis6c ones. The" canoni
cal" form proposed by Chakrabarti is of the "m-linear" type. Belonging to all three of the 
"Pl-, "P2- and "P3-linear" categories is a "p-linear" form of significance for large Ipl. 

§ 1. Introduction 

Consider the free-particle Dirac equation for the four-component spinor func
tioncjJ(D) (x), 

(rppfl'-m)cjJ(D) =0 , (1·1) 

where 

jJ. = 0, 1, 2, 3; (1·2) 

and Y p are a set of 4 X 4 matrices satisfying 

(1·3) 

(We choose th.e diagonal metric with goo = - gll = - g22 = - g33 = 1; and we take 

ro, irl, ir2, ir3 and iY5 (= iYorlrzrs) to be. hermitean.) A primary feature of (1·1) 
is the sim.ilar (linear) footing given to all four components of the energy-momentum 

operator P p' 

This equation was transformed to so-called "canonical" forin by Foldy 
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and Wouthuysen/) and also independently by Tani.2
) They showed that the wave 

function 

(1·4) 

satisfies 

(1· 5) . 

where 

F(p, m) == [2E(p, m) [m+E(p, m)]]-I/~(m+E(p, m) +ry.p), (1·6) 

and 

(1· 7) 

Foldy and W outhuysen adopted the viewpoint that this procedure IS a transfor
mation of the Dirac equation in Hamiltonian form 

where the Dirac Hamiltonian IS 

H=yo(ry·p+ m), 

to yield (1· 5) 111 which the Hamiltonian 

H(F)=F(p, m)HF-I(p, m) =E(p, m)yo 

(1·1') 

(1·8) 

(1·9) 

can be taken to be in diagonal form. [The inverse of the transformation operator 

IS gIven by 

F-I (p, m) =F( - p, m).] (1·10) 

The form (1· 5) has particular significance when one IS considering the non

relativistic limit, Ipl~O. 
In contrast to (1·1), (1· 5) ascribes a distinctive role to Po. There is another 

well-known form of the Dirac equation in which Po again appears quite differently 
from Pi, i = 1, 2, 3 .. This forn: was first put forward by Mendlowitz,3) and was 
later rediscovered by Cini and Touschek,4) and also by Bose, Gamba and Sudar

shan.5
) They showed that 

(1·11) 

satisfies 

POcjJ(J,f) = E (p, m) I p I-Iy 0"1. pcjJ(M), . (1·12) 

where 

M(p, m)= [2E(p, m)[lpl +E(p, m)]]-1/2(lpl +E(p, m)-Ipl-Imry·p). (1·13) 

In this case 

(1·14) . 
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818 A. J. Bracken and FI. A. Cohen 

where 

M-1 (p, m) =M( ~p, m). (1·15) 

Equation (1·12) is often ·referred to as "the extreme relativistic form of the 

Dirac equation", because it is useful when considering the limit Ip 1-----0> 00. 

Apart from the Foldy-Wouthuysen-Tani and the Mel~dlowitz forms, which 
have been discussed by. many authors,6) there is the" canonical" form as proposed 
by Chakrabarti.7

) . This is 

(1·16) 

with 

(J ·17) 

where 

C (p) = [2 (p;p,uy/2 [I Pol + (PliP") 1/2J J -1/2 (I Pol + (Po-po-y/2 - E (Po) Yo,,!' p), (1·18) 

and 

(1·19) 

To be mOre explicit, 

(1· 20) 

where 

(1·21) 

Reflecting on these results we are struck by the similarity in form of the 

transformation operators (1· 6), (1·13) and (1·18), suggesting an underlying 

structure which has not been· fully explored. While in (1·1) In and all four 

components of PI' appear liriearly, we note that this is true only of Po in (1· 5) 

and (1·12), and only of· m. in (1·16). Consequently, labelling (1· 5) and (1·12) 
as "po-linear" forms, and (1·16) as an "m-linear" form,· of the Dirac equation, 

we are led to ask if there are other transformations, of a similar structure to 

those already presented, leading to other "Po- or "m-linear" equations. Further

more, can one obtain equations in which anyone of the Pi, say jJs, appears li~early; 
that is, are there "ps-linear" forms? More importantly, if to either question the 
answer is yes, ate all such transformations canonical? 

Another question of more direct physical significance also arises. As has 

been mentioned, the "po-linear" forms (1· 5) and (1·12) .are 111 some senses 
appropriate to the non-relativistic and extreme relativistic situations, respectively. 
We may then ask, assuming that· canonical transformations leading to other "j}o~ 
linear" equations can be obta~ned, if there are equati011s amongst these appro

priate to other limiting situations; such as, for example, when only Po and jJs 
become very large (as in a linear accelerator). 

Our aim in this paper is to answer these questions. In § 2 we state a 
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theorem, which is a generalization 6f one given by Case.S
) Then in what follows, 

we exploit the provision by this result of a method of transforming (1·1) into a 
great variety of forms. In particular, in §§ 3, 4 and 5 respectively, we obtain 
"po-linear" 'forms, of which (1· 5) and (1·12) then appear as special cases; "m
linear" forms, of which (1·16) is a special case; and indeed "pw·linear" forms. 
Amongst the "po-linear" forms are some appropriate to physical. situations in 
different limits. In § 6, we obtain a "p-linear" form which, like the Mendlowitz 
equation, is most appropriate to the ~xtreme relativistic limit. Finally, in § 7, 
we go over into momentum representation to discuss the question of scalar products 

in order to establish that the transformations which yield" Po-, "Pi- and" m-linear" 
forms aTe canonical. We show that, for each of these five types of equations 

there is associated .a mode of scalar product, in~ariant under inhomogeneous 
Lorentz transformations, and with respect to which the solutions of the correspond
ing equation may be taken to form a Hilbert space. The Dirac equation itself 

is at once of all five types, and accordingly, the scalar product for. Dirac wave 

functions in momentum representation cfln be expressed in these five modes. The 
scalar'products corresponding to '~Po~ and "m-linear" forms have simple expres
sions also in co-ordinate· 'representation; but this is not the case for those corre

sponding to "Pi-linear" forms. 
In a subsequent publication we hope to exhibit all the results obtained here 

as manifestations of the group properties of the Dirac equation. 

§ 2. Statement of transformation theorem 

The main results of this paper are derived using the following theorem, 
whose prpof, being elementary, is not presented: 

Theorem: "Let A, B, be n X n matrices, with 

where I is the n X n unit matrix, and a, {3 are real non-zero scalars; 

Define 

Then 

(b) {B, A-B}.=O. 

V(A, a; B, (3) =(3-1[2a(a+p)]-1/2({3aI+BA). 

(1) V-I (A, a; B, (3)= {3-1 [2a (a + (3)] -1/2 (a{3J + AB) 

(= V(B, a;A, (3)); 

(2.' 1) 

(2 ·2) 

(2 ·3) 

(2 ·4) 

(2·4') 

(2) . V(A, a; B, (3) A V-I (A, a; B, (3) = a{3-1 B ." (2·5) 

Note: 1. If A and Bare hermitean matrices, then V(A, a; B, (3) IS a unitary 
matrix, l.e. 
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820 A. J. Bracken and H. A. Cohen 

V-I (A, a; B, (3) = vt (A,a; B, (3) . 

(This can only occur with a 2>(32.) 
2. Because 

V(A, a; B, (3) = - V(A, -a; B, -(3), 

(2 ·6). 

(2·7) 

we shall henceforth take a>O without any significant loss of generality. 
3. If a 2 =(32, the choice (3)0 must also be made to ensure that [2a(a + (3)J-l/2 

is well defined. Furthermore, if (32)a2, (3<0, then this factor should be replaced 
by ±i[ -2a(a+(3)J-:l/2, with the same choice of sign in (2·3) and (2·4). 

4. If a 2>(32, one also has, 

(a) with (3)0, 

V(A a· B (3) = exp {- B (A - ~. arctan [(a 2 - (32)1/2/(3J} . (2·8) 
, , , 2(3 (a'J. - (32y/2 . ' 

(b) with (3<0, 

V(A, a; B, (3) = exp {2:(~ -=-:i1/2 -en + arctan[ (a
2 

- (32Y/2/(3J)}. (2·9) 

5. If (32)a2, (3)0, one also has . 

. V(A, a; B, (3) = exp { 2:(~~ ~ ~il/2 arctanh [((32 - a 2y/2/ (3J } . (2 ·10) 

In this paper we shall have no need to consider the case (32)a2, (3<0. 
6. An extension may be made to the situation where a and (3 are com~ 

muting, hermite an operators, whose inverses are defined almost everywhere, and 
which also commute with both A and B. One is then faced with the difficulty 

of correctly interpreting the inverse square root of an operator expression, as in 

(2·3) and (2·4). 

7. If an equation holds of the form 

CqJ=AqJ , (2 ·11) 

where qJ is a v"ector in the space in which A and C act, and C commutes with 
V(A, a; B,(3), then one obtains the equation 

(2 ·12) 

by defining 

qJ' = V(A, a; B, (3) qJ • (2 ·13) 

I 

§ 3. "po-linear" forms of the Dirac equation 

Consider now the Dirac Hamiltonian H of (1· 8) as the operator A 111 the 
terms of § 2, taking 

a=E(p, m). (3 ·1) 
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Equation (1·1') is seen to be of the form (2 ·11), with C = Po. Thus having 
found appropriate Band (3 satisfying the conditions of the theorem, one obtains, 
in the manner of (2 ·11) rJ (2 ·13), the "po-li~ear" equation 

with 

(1/ (x) = YeA, a; B, (3) (j/D) (x). 

Examples are provided by the following:
(a) Foldy-1Vouthuysen-Tani form 

Take 

B=yom" (3=m, 

yielding 

Pocj/ =E(p, m)yo¢'. 

In fact, in this case 

V (A, a; B, (3) = F(p,m). 

(3,·2) 

(3 ·3) 

(3·4) 

(3 ·5) . 

(3 ·6) 

(The' choice (3 = - m is also possible, leading to a change of sign 111 (3·5), as 
seen from (3·2).) 

(b) Mendlowitz form. 
Take 

B=yo'Y·p, (3= Ipl (3·7) 

(noting that singular behaviour may be expected in this case as I pi ~O), yielding 

(3 ·8) 

with, iIi this instance, 

YeA, a; B, (3) =M(p, m). (3 ·9) 

(Again the replacement of (3 by - (3 throughout is possible, with a change of 

sign in (3·8).) 
(c) General" po-linear" fonn 

Take 

where q(a) (p, m) (a = 1, 2, 3, 4) are hermitean, and satisfy 

q(l)[Pl-q(lJ +q(2)[P2-q(2)] + q(3)[P3-q(3)] +q(4)[m-q(4)] =0. 

(3 ·10) 

(3 ·11) 

(The latter condition is necessary to ensure that (2·2) holds; the former is 
imposed to ensure the hermiticity of (3; Singular behaviour may be expected if 

(3~0 or (3 = 0 is possible.) In this case, Eq. (3·2) reads 
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(3~0 or (3 = 0 is possible.) In this case, Eq. (3·2) reads 
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4 

PocjJ' = ± E(p, m) {L~[q(a)J2} -1/2ro (rlq(l) + r2q(2) + r3q(3) + q(4» cjJ'. 
u=l . 

(3 ·12) 

It is possible to deduce from (3 ·11) . and the hermiticity of q(a) (a == 1, 2, 3, 4), 
that (a 2 

- (32) is positive definite (or zero in the trivial case B = A); and this is 
of c'ourse also true of a and (32. Thus we can in general express YeA, a; B, (3) 
in the form (2·8), or (2·9), according as the plus or minus sign is taken in 
the definition of {3 in . (3 ·10) . 

The Foldy-Wouthuysen-Tani and Mendlowitz cases now correspond to the' 
particular choices (with (3 positive definite in each case) 

q(l) = q(2) = q(3) = 0 , (3 ·13) 

and 

q(l) = PI, q(2) = P2 , q(3) = jJ 3 , (3 ·14) 

respectively. 

(d) Further simjJle cases 
Other examples of some interest are provided by the following choices 111 

(3 ·10) (again with (3 positive definite in each case): 

q(2) =0, q(3)=0, 

leadirig to 

PocjJ' = E(p, m) [(PlY + m 2J -1/2ro (riPI + m) cjJ'. 

(Useful when considering I P2,31 ~O.) 

q(3) = P3 , q(4) =0, 

leading to 

jJocjJ' = E(p, m) [(jhY + (jJ3YJ -1/2ro (rdJ 2 + r:dJa) cjJ'. 

(Useful when considering Ip2,31~oo.) 

(iii) q(1) = 0 , q(2) = 0,' 

leading to 

jJocjJ' =E(p, m) Ip31- l ror3P3cjJ'. 

(Useful when considering Ip31~oo.) 

(3 ·15) 

(3 ·16) 

, (3·17) 

(3 ·18) 

(3 ·19) 

(3·20) . 

(iv) q(i)=-K(p,m)jJi (i=1,2,3), q(4)=K(p,m)m, (3·21) 

where 

K(p, m) = (m2_ p 2)E-2 (p, m), 

leading to [with {3 =K (p, m) E (p, m) J 

PocjJ' =ro( -ry'p+ m)cjJ'. 

(3·22) 

(3·23) 
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Five Classes of Transformations of Dirac Spinors 823 

This equation is of interest in regard to the parity transformation for (1·1'). 
One has 

YeA, a; B, (3) =E-1(p, m) (m+ry·p), (3 ·24) 

so that 

(3 ·25) 

using (1·1'). The relation to the usual parity transformation IS clearly seen 
'. from (3·25). Another way of looking at the effect of this transformation is 

.provided by the observation that 

YeA, a; B, (3) =F2 (p, m). (3 ·26) 

The ~ffect of one F(p, m) on cjJ(D) (x) is to produce a function satisfying (3·5). 
If F-1(p, m) is now applied, one of course returns to cjJ(D) (x) , satisfyirig (1·1'); 
but applying instead F-1 

( - p, m), 'one must produce a wave function satisfying 

(3·23), as (3·5) IS unchanged if p~ - p. However, from (1·10) one sees that 

F- 1
( -p, m) =F(p, m), (1 ~ 10') 

so that the operator F2 (p, m) transforms cjJ(D) (x) into a function satisfying (3·23). 

§ 4. " m-linear" forms 

Now consider the Dirac operator y foP'" as the operator A III the terms of 
§ 2, taking 

a= (p,"p,"Y/2. (4.1) 

In this case, Eq. (1·1) takes the form (2 ·11), with C = m. For appropriate B 
and (3 satisfying the conditions of the theorem, one then obtains the" m-linear" 
equation 

with 

cjJ'(x) =V(A, a;B, (3)cjJ(D) (x). 

Examples are provided by:
(a) Chakrabarti form 

-Take 

B=yoPo, (3 = I Pol, 

yielding 

In this case,-

YeA, a; B, (3) =C(p). 

(4·2) 

(4·3) 

(4·4) 

(4·5) 

(4·6) 
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824 A. J. Bracken and H. A. Cohen 

(b) General" m-linear" fonn 
Take 

(4·7) 

( = [q (v)q (v)] 1/2) , 

where q(v) (p) (v = 0, 1, 2, 3) *) are hermitean, are such that (32 is positive definite 
and satisfy 

q(O) [Po-q(O)] -q(1)[P1-q(1)] -q(2) [P2-Q(2)] -Q(3) [jY3-q(3)] =0. (4·8) 

In this case, Eq. (4·2) reads 

mcj/ = (p pjypy/2 [q(v)Q(V)] -1/2 (roq(O) - rlq(l) - r2q(2) - t aq(s» cj/. (4·9) 

It is possible to deduce from (4·8), the hermiticity of q(v) (v = 0, 1, 2, 3), and 
the positive definitene,ss of {32, that ({32 - ( 2

) is also positive definite (or zero in 
the trivial case B = A), so that, with a and (3 also being positive ,definite, .one 
can always write YeA, a; B; (3) in the form (2 ·10). 

The Chakrabarti form corresponds to the choice 

q(O) =Po, q(2) =0, q(3)=0. 

(c) Further simple cases 
Other particular choices of some interest arc 

(i) q(O)=jYO, q(1) = PI, q(2)=0, q(3) =0, . 

leading to 

mcjJ' = (p pppy/2 [ (pO)2 - (PlY] -1/2 (r oPo - r dJ1) cjJ'. 

(ii) q(O) = W(p)po, q(i) = - W(P)jJi (i= 1,2,3), 

where 

leading to 

(4 ·10) 

(4 ·11) 

(4 ·12) 

(4 ·13) 

(4 ·14) 

mcjJ'= (rojJo+ 'Y'p) cjJ', (4·15) 

which again has reference to the parity transformation. One has 

YeA, a; B, (3) = (ppjJ P )-1/2E (Po) ro(rvP") , 

so that (using (1·1») again, as in (3·25), 

cjJ' (x) = E (Po) rocjJ(D) (x). 

Furthermore, 

(4 ·16) 

(4 ·17) 

*) We place brackets around indices which may not be Lorentz indices. The distinction be
tween the two types is well brought out in (4·10) for example) where q(lI) is <;:learly not 9. four
vector operator, 
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Five Classes of Transform4tions of Dirac SjJinors 825 

V(A, a; B, (3) =C2 (p), (4 ·18) 

a fact whose explanation is quite analogous to that. following (3·26). 

§ 5. "ps-linear" forms*) 

The Dirac equation can be written in the form 

(5 ·1) 

where 

G= -rs(ropo-rdh -rdJ2-m). (5·2) 

Taking G now as A in the terms of § 2, with 

q= [(PO)2- (Pl)2- (p2Y_m2]1!2 (=J...(po, PI, P2, m), say):. (5 ·3) 

one can again look for suitable B. and (3. Equation (5 ·1) is of the form (2 ·11) 
with C = Pa; so that when Band (3 are found, one obtains the" ps-linear" equation 

with 

¢'(x) =V(A, a; B, (3)¢(D) (x). 

(Note that singular behaviour may be expected as J... (Po, jJI, jJz, m) -->0.) 

Examples. are provided by:-

(a) General" jJs-linear" form 
Take 

(5·4) 

(5·5) 

(5·6) 

where q(v) (Po, PI, P2, m) (v = 0, 1, 2, 3) **) are hermitean, are such that (32 is posi
tive definite, and satisfy 

q(O) [Po-q(O)] -q(l) [Pl-q(l)] -q(2) [P2-q(2)] -q(S)[m-q(S)] =01. (5 ·7) 

Then (5·4) reads 

Ps¢' = - J... (Po, PI, jJz, m) [q(v)q(v)] -1/2rs (roq(O) - rlq(l) - r2q(2) - qUI») (j/. (5·8) 

In analogy with the case of the general "m-linear" form, V(A, a; B, (3) here 
can always be written in the form (2·10). 

(b) A simple case 
A choice of q(v) (v = 0, 1, 2, 3) of some interest is 

*) By obvious alteration of the discussion in this section of "p3-linear" cases, analogous results 
for" Pl- and" P2-1inear" cases can be derived. 

**) See the footnote on p. 824. 
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826 A. J. Bracl?en and I-I. A. CalLen 

q(O) = po, q(l) =0,' q(2) =0 , q(3)=0, 

leading to 

P3<j/ = E (Po) A (jyo, PI, P2, m) rors<//, 

which IS the simplest "ps-linear" form one can obtain. 

~ 6'. Further applications of transformation theorem 

(5· 9) 

, We apply the theorem in yet aI:othcr vvay to obtain from the Dirac equation 
an interesting "p-linear" form:-

Multiply (1·1) by r5, to' obtain 

r5 (ropo - m) </J(D) = r57 'p<jJ(D). 

, Now apply the theorem with 

A=r5(rojYO-m), 

B=r5rOPO, 

(and, C = r57' p), to obtain 

E (Po) [ (pO)2 - ?n 2J 1/2r 5 r 0<// = r 57 'P<// , 

or, finally, 

E (Po) [ (PoY - m 2J 1/2ro</J' = 7 'p</J'. 

(6 ·1) 

(6·2) 

(6·3) 

(6 ·4) 

(6·4') 

This 'equation is similar in appearance to the Mendlowitz form (1·12), and is 
just as useful in considering the limit I p 1--700. In both cases, states of positive 

and negative helicity are separately described by two component equa,tions. In 
(6·4'), the transformed wave function is ' 

</J' (x) = V(A, a; B, (3) </J(n) (x), 

where, explicitly, 

V(A, a; B, (3) = {2 [(PoY - m 2J 1/2 (I jyol + [(jYO)2 - m2r/2)} -1/2 

X (I Pol + [(pO)2 - m 2r/2 
--:- E (Po) mro). 

(6 ·5) 

(6 ·6) 

Note that (6·4') is in particular "Pa-linear ", and accordingly an equation of this 

form could have been obtained, via the method of § 5 (a). 
As regards applications of the theorem other than to the free-particle Dirac 

equation, we mention that Case 8) has applied his restricted version in dealing 

with free-particle equations for spin 0 and 1~ and with one-pm"ticle equations in 
situations involving electro-magnetic irlteractions. An' example' of the theorem's 
implicit use is contained 111 a paper by Biedenharn. 9

) 

§ 7. 'Scalar products 

It may be said that, a form of the Dirac equation is of limited value unless 

one can exhibit, the solutions thel"eof as forming a Hilbert spac~ which" carries 
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Five Classes of Transformations of Dirac Spinors 827 

the appropriate representations of the full inhomogcncous Lorcntz group for the 
dcscription of a free spin t particle (and anti-particle) of mass' m. Thus it is 
important to find an invariant scalar product for solutions of a given form of 
the eql1ation. It is in fact possible to do this for cach of the threcgeneral forms 

discussed in §§ 3, 4 and 5. 
To consider this question, it is convenient to go over into momentum repre

sentatio~l. Thus we write 

where' 

(r p.kP. - m) X (D) ± = 0 , (7 ·2) 

with 

kOx(D)± = ±E(k, m)x(D)±. (7 ·3) 

Conversely to (7· 1), one has 

X(D)± (k) ~e±iE(k,m)Xot[E(k, m) ±Po] (2n) -3/2 ~ d 3xe-ik ,x </J(D) (xo, x). (7 ·4) 

Now the scalar product for Dirac wave functions In coordinate representa
tion is well known as 

( </JI (D), </J2 (D») =) d 3 X</JI (D)t (Xa, x) </h (D) (Xa, x) , (7 ·5) 
Xo const 

where </J(DH is the hermitean conjugate of </J(D). 

under inhomogeneous Lorentz transformations. 
formlO) 

This scalar product is invariant 
It can also be written in the 

(</JI (D>, </J2(D») = _l_' (d 3x {?il (D) (Xa, x)B</J2(D) (Xa, x) _ fJ(h CD) (x~! X)_</J2(D) (Xo, x)}, ~ 
2m J . fJ~ fJ~ 

310 const 

(7,·6) 

where 

(7 ·7) 

Using (7 ·1) one finds ll
) 

(</JI(D>, </J/D») = ) E2 (~3,k m) {XI(DHt (k) X2(DH (k) + XI(D)-t (k) X2(D)- (k)}. (7·8) 

(The cross terms vanish because of. the hermiticity of the operator 
E-I(k, m)ro(ry·k+m), which has different eigenvalues [viz. + 1, -1 respec,tively] 
on X(D)+ and X(D)-.) 

From (7·2) it is ,possible to obtain the identi ty12) 
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310 const 
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(The cross terms vanish because of. the hermiticity of the operator 
E-I(k, m)ro(ry·k+m), which has different eigenvalues [viz. + 1, -1 respec,tively] 
on X(D)+ and X(D)-.) 

From (7·2) it is ,possible to obtain the identi ty12) 
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(7·9) 

In particular, 

(7·9') 

allowing one to deduce ll
) from (7·8), 

(</h (D), </J2(D») = ( --~~-- {X}DH- (k) X/DH- (k) _'X}D)- (k) X2(D)- (k)}. (7 ·10) 
) mEek, m) 

Furthermore, one can now use 

k3Xl(D)± (k) X2(J)± (k) = mXl(D)± (k) r3X2(D)± (k), 

to deduce from (7 ·10), 

(7·9/1) 

(</J1(D), </J/D») = ~E(:3!1)k3{X1(DH-(k)r3X2(DH-(k) -X1(D)-(k)r3X2(D)-(k)}. (7·11) 

The three modes (7·8), (7 ·10) and (7 ·11) of the scalar product for Dirac 
wave functions are of particular significance in regard to "Po-, "m-, and "P3-
linear" forms, respectively, of the Dirac equation. 

For the general "jJo-linear" case [§ 3 (c) ] in momentum representation, one 

has 

A=ro(ry·k+1Jl), a=E(k, m); (7 ·12) 

(7 ·13) 

with q(a) (k, m) (a = 1, 2, 3, 4) real. Thus A and Bare hermitean matrices, so 

that V CA, a; B, (3) is a unitary matrix [d. (2·6)]. . Defining 

(7·14) 

with 

X'±(k) =V(A, a; B, (3)X(D)±(k) (7 ·15) 

[so that X'±(k) are related to </J'(x) of (3·12) in the manner of (7·1), (7·4)J, 
one then has, from (7·8), 

(</J/, </J/) = (</J1 (D>, </J2 (D») . 

F or the general "m-linear" case [§ 4 (b) J, one has 

A=r,uk,u, a= (k,uk,uY/2; 

B ' (.) =, [q(,,)q(V)J 1/2,' = roq(O) - r1q(1) - r2q(2) - r3q(3) , jJ v 

with g(v) Ck) (v = 0, 1, 2, 3) real. Thus A and B satisfy 

fOBf=Bro, 

(7·16) 

(7 ·17) 

(7 ·18) 

(7 ·19) 
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enabling one to deduce that 

YoVt(A, a; B, /3) = V-leA, a; B, /3) Yo . (7 ·20) 

(Note that At for example means here the usual matrix hermitean conjugate of 
A; there is no reference to a particular mode of Dirac scalar product.) Defining 

with,· agal11, 

x' ± (k) = yeA, a; B, /3) X(D)± (k), 

one has, from (7·20), (7 ·10), 

(</J/, </J/) = (</Jl (Dl, </J/D». 

Finally, for the genenil "ps-linear" case [§ 5 (a)], one has 

A = - y s (y oko - y lkl - Y 2k2 - m) , 

B= - Ys (Yoq(O) ~Ylq(l) -Y2q(2) - q(S), 

a = }, (ko, kI, !?'2, m); 

/3 = [q(")q(")] 1/2, 

with q(") (ko, kl, kz, m) (v=O, 1,2,3) real. Then A and B satisfy 

whence one deduces 

. YoYs vt (A, a; B, /3) = V-l (A, a; B, /3) YoYs .*) 

Defining 

with 

. x'±(k) =V(A, a; B, /3)X(D)±(k), 

one has, from (7 ·27), (7 ·11), 

(</J/, </Jz')' = (</Jl (D), </J2 (D» . 

(7 ·21) 

(7·22) 

(7·23) 

(7 ·24) 

(7·25) 

(7·26) 

(7·27) 

(7·28) 

(7·29) 

(7·30) 

The Dirac wave functions form a Hilbert space with the associated Lorentz
invariant scalar product (7 . 8) [(7 ·10), (7 ·11)]. The results (7 .. 16), (7·23) 
and (7·30) show that in transforming the Dirac equation into a "Po-, "m- or 
"ps-linear" form**) via the use of an operator V (A, a; B, /3), one is in effect 

performing a canonical transformation to a new description of the free spin t 
particle (and anti-particle) of mass m. The solutions of the derived equation 
form, a Hilbert space with associated scalar product (7 ·14), (7·21) or (7·28) 

*) Note that this is also true for V(A, a; B, S) as in (6·6). 'Fhe following results for "jJ3~ 

linear" forms thus also hold for (6·4 /). 
**) See the first footnote on p. 825. 
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as the case may be; and this scaIar product is invariant under inhomogenous 

Lorentz transformations a.s represented in the new picture. Just as the Hilbert 

space of Dirac wave functions carries the appropriate representations of the full 
inhomogeneous Lorentz group, so also this is true of the derived space. 

Note that the unitarity of the matrix YeA, a; B, (3) in the general "po-linear" 

case is in this context of no more and no less significance than the relationships 

(7· 20) and. (7·27); it is in pa:r:ticular misleading to refer to the F oldy-W outhuysen
Tani transformation, but not the Chakrabarti one, as unitary. 

In closing, we point out that the scalar products (7 ·14) and (7·21) also 

have simple forms in the co-ordinate representation, viz. 

(</Jr', cjJ/) = ~ d 3xcjJr't(xo,x)cjJ/(xQ' x), (7 ·31) 
:110 const 

corresponding to (7·14); and 

(</J/, cjJ/) =-~ ( d 3x{Wr' (xo, x)_~_~{L~ __ x~_-c- aW{~xo,_x)</J2/(XO' x)}, (7·32) 
. 2m J . axo' axo 

:110 const 

corresponding to (7·21). There is no simple form in the co-ordinate representa

tion of the scalar products correspondiilg to "Pi-linear" forms. 
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