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The free-particle Dirac equation has two remarkable features: (1) It is linear in all four
components of the energy-momentum p,, and also in the mass m. (2) For its solutions
there are five distinct simple modes of the invariant scalar product in the momentum repre-
sentation. - ‘ v S )

In this paper, a theorem presented by Case is generalized and used to obtain five classes
*of transformations of the Dirac equation. Every transformation in a given class has two
properties characteristic of the class: (1) The linearity in a corresponding one of the five
quantities p,, m is maintained in the transformed equation. (In this way “py-, “p1-, “pa-r “ ps-
and “m-linear” forms of the Dirac equation are obtained.) (2) A corresponding mode of the
invariant scalar product is preserved. Thus all five classes consist of canonical transforma-
tions. : ’ ‘
Included amongst the “pj-linear” forms are the Foldy-Wouthuysen-Tani equation, and
the one commonly attributed to Cini and Touschek, together with equations appropriate to
limiting situations other than the non-relativistic and extreme relativistic ones. The “canoni-

. cal” form proposed by Chakrabarti is of the “m-linear” type. Belonging to all three of the

[13

p1-, “po- and “py-linear” categories is a “ p-linear” form of significance for large |p|. -

§ 1. Imtroduction

Consider the free-particle Dirac equation for the four-component spinor func-
tion ¢ (x),

(Fupt —m) g =0, o a

where -

p,=1i0/0x",  n=0,1,2,3; 1-2)

and 7, are a set of 4X4 matrices satisfying

{T/n Tu} :29,:“4 . - ' (1'3)

(We choose the diagonal metric with o= —¢n=—9n=—¢,=1; and we take
Tor 71, i3 275 and 775 (=iye717y7s) to be hermitean.) A primary feature of (1-1)
is the similar (lincar) footing given to all four components of the energy-momentum
operator p,. ' _ ’
This equation was transformed to so-called ‘“canonical” form by Foldy
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and Wouthuysen,” and also independently by Tani.”? They showed that the wave

function o _
0 () = F(p, m) ¢ () | a9
satisfies | : :
P =E(p, m)1op", (1-5) -
where | o '

F(p, m) = [2E(p, m) [+ ECp, m) 11+ E(p, m) +7-p),  (16)

and.

E(p, m) = (m*+ p’)"~ ' _ 1-7)

Foldy and Wouthuysen adopted the v1ewp01nt that this proccdure is a transfor-

matlon of the Dirac equation in Hamiltonian form

pop P = HYP, | ' (1,1/)

where the Dirac Hamiltonian is ‘ , |
H=7,(y-p+m), | (1-8)

to yield (1:5) in which the ‘Hamiltonian |
H® =F(p, m) HF (p, m) = E(p, m)7s (1-9)

can be taken to be in diagonal form. [The inverse of the transformation operator
is given by

F(p, m) =F(—p, m).] | - (1-10)

The form (1-5) has particular significance when one is cons1dcr1ng the non-
relativistic limit, | p|—0.

In contrast to (1-1), (1-5) ascribes a distinctive role to 1)0 There is another
well-known form of the Dirac equation in which p, again appears quite differently
from p;, i=1, 2, 3. . This form was first put forward by Mendlowitz,” and was
later rediscovered by Cini and Touschek,? and also by Bose, Gamba and Sudar-
shan.®  They showed that

SO =M(p, e @)

satisfies ‘ .
P =E(p, m) | pl~"rey - pp™®, (1-12)

where

M(p, m)=[2E(p, m)[| p| + E(p, m]1™(| pl + E(p, m)—| p|*my-p). (1-13) |

In this case

M(p, m) HM™(p, m) =E(p, m) | pl“1o7-p.» (1-14)
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where

M= (p,m)=M(—p, m). (1-15)

Equation (1-12) is often referred to as “the extreme relativistic form of the -

Dirac equation”, because it is useful when considering the limit |p|—oo.
Apart from the Foldy-Wouthuysen-Tani and the Mendlowitz forms, which
have been discussed by. many authors,” there is the “canonical” form as proposed

by Chakrabarti” . This is | |
€ (p0) (B ) = my©, e
with _ .
0O =C(p) PP (2), @
where | ' "

Clp) = EZ(P,;P“)‘/Z[IéoI + (22117 pol + (Bop?) =€ (B 7oy p) > (1-18)

and ’ v ,
‘ € (20) = | pol 10 - ' - (1-19)
To be more explicit, ’ . ‘ |
C(DYT,0"C7 (D) =€ (1) (210705 | (1-20)

where o o : . .
C(po, p) =C(p0, —p). (‘1~2»1')

‘ Reflecting on these results we are struck by the similarity in form of the
transformation operators (1-6), (1-13) and (1-18), suggesting an underlying

structure which has not been fully explored.. While in (1-1) s and all four
components of p, appear linearly, we note that this is true only of p, in (1-5)
and (1-12), and only of m in (1-16). Consequently, labelling (1-5) and (1-12)
as “pelinear” forms, and (1-16) as an “m-linear” form, of the Dirac equation,
we are led to ask if there are other transformations, of a similar structure to
those already presented, leading to other “p or “m-linear” equations. Further-
more, can one obtain equations in which any one of the p;, say g, appears linearly;
that is, are there “pylinear” forms? More importantly, if to either question the
answer is yes, are all such transformations canonical? ,
» Another question of more direct physical significance also arises. As has
been mentioned, the *pglinear” forms (1-5) and (1-12) .are in some senses

appropriate to the non-relativistic and extreme relativistic situations, respectively.
We may then ask, assuming that canonical transformations leading to other *p,-
linear” equations can be obtained, if there are equations amongst these appro-
priate to other limiting situations; such as, for example, when only p, and p,
become very large (as in a linear accelerator). . o
Our aim in this paper is to answer these questions. In §2 we state a
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theorem, which is a generalization of one given by Case.” Then in what follows,
we exploit the provision by this result of a method of transforming (1-1) into a
great variety of forms. In particular, in §§3, 4 and 5 respectively, we obtain
“pe-linear” forms, of which (1-5) and (1-12) then appear as special cases; “m-
linear” forms, of which (1:16) is a special case; and indeed “pslinear” forms.
Amongst the “pylinear” forms are some appropriate to physical situations in
different limits. In §6, we obtain a “p-linear” form which, like the Mendlowitz
equation, is most appropriate to the extreme relativistic limit. Finally, in §7,
we go over into momentum representation to discuss the question of scalar products
“in order to establish that the transformations which yield ¢ p¢, “p;- and “m-linear™

forms are canonical. We show that, for each of these five types of equations

there is associated a mode of scalar product, invariant under inhomogeneous
Lorentz transformations, and with respect to which the solutions of the correspond-

ing equation may be taken to form a Hilbert space. The Dirac equation itself
is at once of all five types, and accordingly, the scalar product for Dirac wave

functions in momentum representation can be expressed in these five modes The

scalar products c01respond1ng to “p,- and “m-linear” forms have smlple expres-

sions also in co-ordinate- representation; but thlS is not the case for those corre-
sponding to ‘“pj-linear” forms. : ‘

In a subsequent publication we hope to ‘exhibit all the results obtained here
as manifestations of the group properties of the Dirac equation.

§2. Statement of transformation theorem

The main results of this paper are derived using the following theorem,
whose proof, being elementary, is not presented:

Theorem: “Let A, B be n X n matrices, with

| (@) A=a'l, —g1, @
where I is the #X#n unit .matrix, and «, (8 are real non-zero scalars; '
(b (B A-B =0. ey
Define v a | | _
V(A, a; B, B) =87 [2a(a+ /)17 (Bal+ BA). (2-3)
- Then v v
(1) V(4 a; B, §) = [2aa+8)1 " (@Bl+AB) (2-4)
(=V(B, a; A, B - (24)
2) V(A a; B, B) AV (A, a; B, ) =afB.” (2-5)

Note: 1. If A and B are hermitean matrices, then V (A, «a; B, f) is a unitary

matrix, i.e.
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VA, «a; B, B) V*(A a; B, ). o (2-6).
(This can only occur with a2>,82) ‘ \
2. Because ‘ »
V(A @ B, §) =~ V(4, —a: B, —§), | 2-7)

we shall henceforth take a>>0 without any significant loss of generality.

3. If &’=", the choice 8>>0 must also be made to ensure that [2a(c+ §)]
is well defined. Furthermore, if 3*>a?, $<C0, then this factor should be replaced
by +i[— 2a(a+B) ], with the same choice of sign in (2-3) and (2- 4)

4. If a®>p? one also has,

(@) with >0,
V(A a; B, §) —exp {25%—7%5 arctan [ (a? 32)1/2/5]} @8
(b) with B0, |
VA, a; B, §) =exp {%2 (z + arctan[ (c — 2>1/2/3])} 29
5. If B>’ §>0, onc also has = o
| ’ch, @t; B, §) =exp {%“*i;/ arctanh [ —a)/81}. (2 -"\1o>
In this paper we shall have no need to consider the case F>a?, <0

6. An extension may be made to the situation where o and § are com-

muting, hermitean operators, whose inverses are defined almost everywhere, and
which also commute with both A and B. One is then faced with the difficulty
of correctly interpreting the inverse square root of an operator expression, as in

(2:3) and (2-4).
7. If an equation holds of the form '
- Co=Ag, | @1y

‘where (p is a vector in the space in which 4 and C act, and C commutes with
V(A, a; B, B), then one obtains the equation

‘ Cy’ Zaﬁ_lBga’ - (2-12)
by defining

o=V, a;B Pe. (2-13)

§3. « pelinear” forms of the Dirac equation

"Consider now the Dirac Hamlltoman H of (1-8) as the operator - ‘A in the
terms of §2, taking

a=E(p, m). | (3-1)
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Equation (1-17) is seen to be of the form (2-11), with C=p.. Thus having
“found appropriate B and {8 satisfying the conditions of the theorem, one obtains,
in the manner of (2-11)~ (2-13), the “p¢lincar” equation

b’ =E(p, m)3~BY, | (3-2)
with ‘ | o
¢ () =V (4, a; B, B (). (3-3)

Examples are provided by the following:—
(a) Foldy-Wouthuysen-Tani form

Take » )
B=yom,. f=m, (3-4)
yielding -
oo/ =E(p, m) i S Gy
In fact, in this case ' o - ; v
V(A, a; B, B) =F(p, m). (36
(The choice B= _m is also poésible, leading to a change of sign‘ in (3:5), as
seen from (3-2).)
(b) Mendlowitz form
- Take v
B=yq-p, B=Ipl | -G
(noting tﬂat singular behaviour may be expected in this:cas‘e as | p|—0), yielding
o/ =E(p, m) | p| =17 py/s JNCES)
with, in this instance, | : o
V(A, a; B, B) =M(p, m). 3.9

(Again the replacement of § by —f throughout is possible, with a change of
sign in (3-8).) ‘ :

‘ () General “py-linear” form

Take ‘

‘ | A ) o _
B=7, <T1Q(1) + 790 T 7596 T Q(4)) > , ==+ {;1[4(@]2} V2, @3- 10){
where g (p, m) (a=1, 2, 3, 4) are hermitean, and safisfy

awlpi—awl tamlrr—ae] tawmlrs—aw] tawlm—gwl=0. (3-11)

(The latter condition is necessary to ensure that (2-2) holds; the former is
imposed to ensure the hermiticity of . Singular behaviour may be expected if
f—0 or =0 is possible.) In this case, Eq. (3:2) reads
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- 4 - ' o .
b’ = + E(P’ m) {;l[Q(a)] By, (1qoy + 7220 + 7590+ aw) ¢ @3- 12)

It is possible to deduce from (3-11) and the hermiticity of ¢wy (a=1, 2, 3, 4),
that (a’—pf%) is positive definite (or zero in the trivial case B=A); and this is
of course also true of a and % Thus we can in general express V(4, «; B, B)

in the form (2-8), or (2-9), according as the plus or minus sign is taken in
the definition of 8 in (3-10). ’

The Foldy-Wouthuysen- Tanl and Mendlow1t7 cases now correspond to the

particular choices (with B positive definite in each case)

0y =00 =0 =0, Qe =M (3-13)

and . .

quy =p1, qo = P2, qQe=ps,  quw=0, (3-14)

respectively.
(d) Further simple cases .
Other examples of some interest are provided by the following choices in
(3-10) (again with 8 positive definite in ecach case):

v (1> dw =P, Q(2>—0, 49=0, = qw=m, o (3'15)
leading to ' , ‘ ' |
| p =E(p, m)[(p+m 1 Pr(raptmy. (3416)
" (Useful when considering |p,|—0.) | '
| \ (ii) qu=0, Q=72 do =15 9w =0, (3-17)
‘leading to | . . .
o =E(p, m) [(p)'+ (0T oot t 1) (3-18)
(Useful when considering | ps|—>00) | |
(i) ¢w=0, qw=0, gw=p, qw=0, (3‘19} “
leading to R
o’ =E(p, m) | pal ot sy (3-20) -

(Useful when cons1der1ng | 3] —>00.)

() qw=—K(p,mp (=1,2,3), go=K(p,mm, (3:21)
where ’ '
K(p, m)=@m'-pYE*(p, m), (3-22)
leading to [with §=K(p. m) E(p. m)] |
P =1~y ptm)g. (3-23)

¥10¢ ‘2T Joqueidas uo 1s0nb Ag /Biosfeulno [pjo;x0'd1d//:d11q Luoj; papeojumog


http://ptp.oxfordjournals.org/

Five Classes of Transformations of Dirac Spinors 823

This equation is of interest m regard to the parity transformation for (1-17).

One has ‘ 4
V(A, a; B, §) =E~(p, m) (m+7-p), (3-24)

" so that

using (1.1,)', The relation to the usual parity transformation is clearly seen
from (3-25). Another way of looking at the effect of thls transformatlon is
provided by the observation that

V(A, a; B, B) =F*(p, m). . (3-26)

The effect of one F(p, m) on ¢ (z) is to produce a function satisfying (3-5).
If F*(p, m) is now applied, one of course returns to ¢ (x), satisfying. (1-1");
but applying instead F~'(—p, m), one must produce a wave function satisfying

(3-23), as (3-5) is unchanged if p——p. However, from (1-10) one sees that -

F(—p, m)=F(p, m), ‘ R (1:10”)

so that the operator F*(p, m) transforms ¢ (x) into a function satisfying (3-23).

§4« “m-linear” forms

Now consider the Dirac operator T#p” as the operator A in the terms of
§2 takmg

a=(p,")" ¢

In this case, Eq. (1-1) takes the form (2-11), with C=m. For appropriate B
and satlsfymg the conditions of the theorem, one then obtams the “m-linear”
equation v :

m¢’ = (b, V"B BY, - (4-2)
with | ' o | ‘
W (@) = V(4, @ B, {)¢™ (2). 4-3)
Examples are provided by:¥
(a) Chakrabarti form
" Take : _ - ‘
B=7,p0, B=12d, | (4-4)
yielding , | ‘ ' | .
| mi’ =€ (o) (L 2V 1o’ | (4-5)
In this case,

VA @B H=CH. 46

V@ =VA @ B9 @]=c(pmh® @, (3:25)
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(b) General “m-linear” form

T ake
B =T0Qw — 719 — 79 — Vs s B=A [Q(o)] : "z__lt [Q(z’)] % 2 (4-7)

| . (=[awa® 1",
where qm(p) (y—O 1, 2, 3)® are hermitean, are such that §* is posmvc dcﬁmte
and satlsfy
| » aolro—qol —awloi—a0] —an [ —ae] —‘Q(s>[i)g~6;’(s>] =0. (4-8)
In this case, Eq. (4-2) reads | |

m’ = (") [20,a®] ™ (Yot 0y = 11q0 — T2 — Tsdw) ¢ (4-9)
It is possible to deduce from (4-8), the hermiticity of g, (v=0, 1,2, 3), and
the positive definiteness of (%, that (8°—a?) is also positive definite (or zero in
the trivial case B=A), so that, with a and B also being positive definite, .one
can always write V(A, a; B, 8) in the form (2-10).
The Chak_rabarti form corresponds to the choice

C](O)*Po, qn =0, qe =0, q»=0. (4'10)

(c) Further Szmple cases
Other partlcular ch01ces of some interest are

(i) qw=p0, qy =21, q<g):() > 4w=0, (4-11)
leading to | E L |
| Com = (B (20 = (BT Qo= i) - (4-12)
(i) qo=W@r, ao=-Wp (=1,273), (413
- where ' » | ,
| W) =o'+ p'] (2,7, (4-14)
leading to
' = (ropotoy-py¢, (4-15)
which again has refefence to the parity transformation. One has |
V(A, a; B, ) = (£.1") € (b 10 (7.0"), (4416
50 that (using (1- 1)) again, as in (3-25),
. ¢ () =€ (o) 7o (). - (4-17)
Furthermore,

*) We place brackets around indices which may not be Lorentz indices. The distinction be-
tween the two types is well brought out in (4 10) for example, where ¢(v) is clearly not a four-
vector operator :
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V(A, a; B, ) =C*(p), _ (4-13)
a fact whose explanation is q'uite analogous to that following (3 -‘26).‘
§5. « j)g-linear” forms™

The Dirac equation can be written in the form

psp P =GP, - (5-1)
where | | o _ ‘
G=—7:(fopo=T1Pr—Ta2—m). | (5-2)

Taking G now as A in the terms of §2, with
@=L — (= (pF =1 (=2(ps b1, 1 ), s05),  (5-3)

one can again look for suitable B and B Equation (5-.1‘) is of the form (2-11)
with C=p,; so that when B and § are found, one obtains the “pslinear” equation

b’ =2 ( Lo, b1, o, m) 37 BY, - (5-4)
with ‘ | |
Y@=V @B Y. (5-5)
(Note that singular behaviour may be expected as 4(po, £1, 23, 7) ——>O)
- Examples. are provided by :—

(a) General “ps-linear”™ form
Take ‘ )

: 3
B=—y, (ToC](o) - f1<](1) T —ds) A= {[Qm)]?—‘;[mi)]z} 2 (5-6)

(=Tawa®1",

where gy (po, P15 P2y ™M) O):O, 1, 2, 3)*® are hermitean, are such that 5° is posi-

tive definite, and satisfy |
aolro—aw]l —awlrr—a0] —aw [1)2 Q<2>] d@ [m 201 =0. 57

Then (5-4) reads | ’ _ ,
230" = =2 (Poy P15 D3> M) [an@®] 15 (TbCI(O) —71qm — T —dw) ¢’ (5:8)

In analogy with the case of the general “m-linear” form, V (A, a; B, 8) here
can always be written in the form (2-10). ' ’

(b) A simple case _ . ‘

A choice of g, (v=0,1, 2, 3) of some interest is

# By obvious alteration of the discussion in this section of “py-linear” cases, analogous results
for “p;- and “py-linear” cases can be derived.

b4 P

**) See the footnote on p. 824,
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: ‘ qw = Do, g =0, q@)_:Q, “ge =0, (5".9)
leading to . | |
- b’ =€ (p0) 2 (Dus b1y s I ToTs (5-10)

which is the simplest “pglinear” form one can obtain,

§6. Further applications of transformation theorem

+ We apply the theorem in yet another way to obtain from the Dirac cquation
an interesting ‘‘p-linear” form:—
Multiply (1-1) by 7, to obtain

e (Fapo—m) ¢ =157 pP?. | (6-1)

Now apply thc the01 em with o » 7
A=1,(Topo—m), — a= [ (£0)"—m"] 1/kz ; ) 6 '_2)
BZTsTOPOa ' B:l])ois \ (63)

(and C=y4y-p), to obtain , . ,
€ (po) [(pof —m* 1/ psrelt =757 -p¢'s (6-4)
- or, finally, : ' ’ v'
€ (1)0) [(p) —m* ]V rop” =1y - py’. o (6 4/) _

This equatlon is similar in appearance to the Mendlowitz form (1-12), and is
just as useful in con51der1ng the limit ]p[—%oo In both cases, states of positive
‘and negative he11c1ty are separately described by two component equations. In
(6-47), the transformed wave function is - ’ ‘

Y@ =V(A, a; B, R (@), (65).
where, explicitly, ‘ | | ‘ o
V(A, a; B, ‘8) = L2[ () =" 12 (| po] 4 [ (po)* — ]V } 7
X (| 2ol + [(p0)* —m™]"* — € (o) m75). (6-6)

Note that (6-4”) is in particular “pglinear”, and accordingly an equation of this
form could have been obtained via the method of §5(a).

As regards applications of the theorem other than to the free- paltlcle Dirac
equation, we mention that Case ® has applied his restricted version in dealing
with free-particle equations for spin 0 and 1, and with one-particle equations in
situations involving electro-magnetic interactions. - An example of the theorem’s
implicit use is contained in a paper by Biedenharn.”

§ 7. "Scalar products

It may be said that.a form of the Dirac equation is of limited value unless
one can .exhibit the solutions thereof as forming a Hilbert space which carries
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the appropriate representations of the full inhomogencous Lorentz group for the
description of a free spin % particle (and anti-particle) of mass m. Thus it is
important to find an invariant scalar product for solutions of a given form of
the equation. It is in fact possible to do this for each of the three general f01ms
dis¢ussed in §§3, 4 and 5.

To consider this question, 1t is convenient to go over into momentum repre-

sentation. Thus we write

v ' éb(é) (xo, x) (27.[) 3/2 S d k - 'ik-m {e»iE(k,m)a:o,X(D)-y- (k) + e~1~iE(k,m)a:0X(D‘)e (k)},

E(k, » )
(7-1)
where- ‘
(1 —m) P =0, | (7-2)
with ‘ .
| Rt = + B, )=, (7-3)

Conversely to (7-1), one has
X(D)+ (k) ___e_v,E(k sMY2Bo 1 [E(k m) 2{2150] (271,) —3/2 g d3xe-z‘k.m¢(D) (xo’ .'XC). (74)

Now the scalar product for Dirac wave functlons in coordlnatc representa—
tion is well known as

(§b1(p), <[)2(D>) = S dgxglh(D)T (o, x) (/)2(])) (l'o» x), . : (7‘5)
. 2y const

where ¢®" is the hermitean conjugate of ¢. This scalar product is invariant
under inhomogeneous Lorentz transformations. It can also be written in the
~ form'

Xy axg

. . D T (D \ ' » '
(D, ) :Egn; S D {@(n) (20, x)@(/)zf ;(xo, x) 0, )(xp_ajf)%[,é(D)»(xo,_x)} e
‘ - (7-6)
where ‘ - ‘ '
o FO = Dy ' @
Using (7-1) one finds™ ' V

B,y B L)+ W) (7-8)

(The‘ cross terms vanish because of the hermiticity of the operator
E~*(k, m)yo,(7y-k+m), which has different eigenvalues [viz. +1, —1 respectively]
on @+ and 3P~ \

From (7-2) it is possible to obtain thc 1dcnt1ty”)
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D () 122 () = mi®* () 7,06 () . - (7-9)
In particular, o ' | ‘ . _
| feola % () 2% (k) = my > (k) 1.9* (k) (7-97)

allowing one to deduce'™ from (7-8),

D) D) d3 _
(@, ) = ng(k s

L7 (R " (k). (7-10)

Furthermore, one can now use
lesXa* (B) 7% (R) ”771%‘]))*(15)7 2 (k) (7-97)
to deduce from (7 10),

(O </f2(D)) :S"“—‘d‘@‘“{%w”(k) 756 (B) — 0P (B rsn " (k) }. (7-11)
E(k, m)k, _ ,

. The three modes (7-8), (7-10) and (7-11) of the scalar product for Dirac
wave functions are of particular significance in regard to “pp, “m-; and “py-
linear” forms, respectively, of the Dirac equation.

For the general “pylinear” case [§3(c)] in momentum representation, one

‘has »
’ A=yo(y-k+m), a=Ek, m); - (7-12)
. . 4 . )
B=1(raw+1a0 a0 +qw), . B==% {E[Qm):lz} v, (7-13)

with 'q@ (k, m) (a=1,2,3,4) real. Thus A and B are hermitean matrices, so

that V(A, «; B, f) is a unitary matrix [cf. (2-6)]. ,Devﬁnihg

(¢, </)2/) - S ET(CZI:EE{ 2R g (k) A T R ()}, (7-14)
with | .
2 (k) =V (A, a; B, B) X(D)+ (k) (7-15)

- [so that x’* (k) are related to ¢’ (x) of (3-12) in thc manner of (7-1), (7- 4)]

one then has, from (7-8),

(@, ¢) = <¢n<’”, ). | (716

For the general “m-linear” case [§4(b)], one has
A=7.k", a= (kLN f (7-17)
" B,:TOQ@ — 710w — T —Tsde) » B=1gwa®"1"% (7-18)

inth.q(y) (k) (v=0,1,2,3) real. Thus A and B satisfy ,
_ 7.AT= ATO, 7oB'= BTO: ‘ <7‘19)
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enabling one to deduce that , , v
7 VT(A, a; B, B) =V (A, a; B, 7o - (7-20)

(Note that A' for example means here the usual matrix hermitean conjugate of
A; there is no reference to a particular mode of Dirac scalar product.) Defining

@60 = T o ) 3 W Wy, @2
with, again, A
. 7= (k) =V (A, a; B, B)x* k), . (7-22)
one has, from (7-20), (7-10), o |
| W5 ) =P, ). (@23)
Finally, for the general “j)s-linear” case [§5(a)], 611_6 has
A= —nGa—da—rike—m),  a=A b kym);  (7024)
B=—71:(Tqw —7T19® — 119w —_Q<3))‘, B=Lawma™ 1", - (7-25)
with gy (Ro, &1, R, m) (v=0,1,2,3) real. Then A and B satisfy
rorsAEArors; rorsB'=Bros, (7-26)
whence one deduces '
rrsVI(A, a; B, 8) =V (A, a; B, B)rors (7-27)
Defining '
o) = Wy @)~ W (), (728)
E k, myk |
with |
o R =V(A @ Bk, (129)
one has, from (7-27), (7-11), ' o
@, ¢').= (1, ). (7-30)

The Dirac wave functions form a Hilbert space with the associated Lorentz-
invariant scalar product (7-8) [(7-10), (7-11)]. The results (7-16), (7-23)
and (7-30) show that in transforming the Dirac equation into a “po, “m- or
“pylinear” form** via the use of an operator V(A4, «; B, ), one is in effect
performing a canonical transformation to a new description of the free spin 3
particle (and anti-particle) of mass m. The solutions of the derived equation
form a Hilbert space with associated scalar product (7-14), (7-21) or (7-28)

- ® Note that this is also true for V(4, «; B, B) as in (6+6). TFhe fo‘llowingvresults for “ps-
linear” forms thus also hold for (6-47).
**) See the first footnote on p. 825.

1 -
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as the case may be; and this scalar product is invariant under inhomogenous

Lorentz transformations as represented in the new picture. Just as the Hilbert 'k

space of Dirac wave functions carries the appropriate representations of the full
inhomogeneous Lorentz group, so also this is true of the derived space.

Note that the unitarity of the matriz V (A, «; B, §) in the general “pylinear”
case is in this context of no more and no less significance than the relationships
(7-20) and (7-27); it is in particular misleading to refer to the Foldy-Wouthuysen-
Tam transformation, but not the Chakrabarti one, as unitary.

In closing, we point out that the scalar products (7-14) and (7- 21) also -

have simple forms in the co-ordinate representation, viz.

when= R N S
corresponding fo (7-14); and
ot 3 0¢y” (0, %) a¢1 (x0, ) .
@, 4:) = 2m;.(,§md <[ o 0 S 0 S o, (732

corresponding to (7-21). There is no simp'le form in the co-ordinate representa-
tion of the scalar products corresponding to “p;linear” forms.
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