

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

Fr bruary 1979 0018-9162'79 00: 053$00.75 1979 1EE 53

Using a conventional macro-assembler as a multi-target

cross-assembler and cross-compiler, the authors developed portable

algorithmic code for microprocessor controllers.
A I . M . 1 . b a l b A w r r n . / x x = m r t m . 7 5

,
= r

,
-

,
- - - - -

-
S 0 . 2

Macro-Assemblers and Macro-Based Languages in

Microprocessor Software Development

Harvey A. Cohen*

Rhys S. Francis

La Trobe University, Australia

Although most advanced minis and mainframes

boast an assembler with advanced macro facilities,

only rarely is significant use made of such facilities.

Yet, as we explain in some detail here, a macro-

assembler is (almost) a universal X-assembler. More-

over, through the development of an assembly-time

stack for message passing between macros (at macro-

expansion time), a macro-assembler can serve as a

universal X-compiler for higher-level languages.

We exploited these macro-assembler capabilities in

constructing a multi-target microprocessor develop-

ment system resident on a DEC-10 mainframe. De-

veloped for the Oznaki Educational Project, this sys-

tem has as prime utilities CROZZ and HELL. The

macro-cross-assembler CROZZ supports the E080,

6800, SC/MP, and 6502 processors, and can be readily

extended by the user to other target processors.

HELL—a "highly extensible luverly language"---is a

special-purpose macro-based language, with an Algol

flavor. It yields code for the 8080 and 6800 pro-

cessors, as well as the DEC-10 mainframe.

In order to meet in advance the challenges of minor

hardware alterations ("update") in a particular

microcomputer, and the challenge of transporting

software from one microcomputer to another, we

have developed a code development strategy called

HELP. HELP involves a code partition scheme, with

well-defined links between what we term algorithmic

and interfacial code.

Background

The continuing emergence of microprocessors and

bit--slice processors presents a variety of challenges

* Currently on study leave at the Division for Study and Research in

Education, MIT, Cambridge. Mass. 02139

 to those responsible for software development. One

of the most basic is simply to produce the utilities and

programming system in which to develop application

programs for a range—possib ly even a great

range—of different processors. While awaiting the

development and/or availability of basic utilities,

many programmers have been obliged to resort to ar-

chaic hand assembly and direct machine loading. A

few companies and other organizations have at-

tempted to minimize this by restraining system

designers to a particular microprocessor, invariably

one supported by a custom development system. One

can safely predict that when new processors emerge

(with specifically desirable capabilities), efforts at

standardization on a particular processor will fail.

And where a custom development system is used, the

availability of basic utilities for any new processor

will depend on the marketing strategy of the

manufacturer.

To overcome these difficulties we advocate the use
of an advanced mini or mainframe already familiar to
the programming team as the host machine for a
multi-target development system. This approach
makes the host machine's existing editing, file
management, back-up, and archival systems avail-
able. In order to follow this approach, cross-assem-
blers for many target processors must be available.
Later we will show how the macro-assembler of the
host machine can serve as a universal X-assembler.

Microprocessors pose a further challenge —
development of cost-effective strategies for the im-
plementation of higher-level languages for a mul-
tiplicity of processors. It is well-known from tradi.
lanai "software engineering" that programming
a higher-level language reduces both the pro-
grammer's effort and the number of errors, yields
more intelligible programs, and provides the oppor-
tunity for developing processor-independent code.

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

54 COMPUTER

However, traditional implementations of high-level
languages require massive effort in the first place.
Moreover, the effort required to update such lan-
guages for processor and architecture variations
becomes ridiculous for the purposes of control-type
applications involving programs of only modest size.
For such control-type applications, we advocate the
development of a problem-oriented, macro-based
language for each family of applications. Each
language will consist of the same core of control
structures and primitive data statements, to which
are added only those constructs relevant to the par-
ticular problem area. The starting point for such
development is the use of a macro-assembler as a
universal X-compiler. As the macro-assembler
already supplies all the necessary parsing and book-
keeping support, programmers unversed in compiler
or systems programming can implement languages
in minimal time. However, since none of the texts on
macro-processors present even rudimentary ideas on
how to use a macro-assembler, we present an in-
troductory discussion here.

Programming in a high-level language immediately
leads to the possibility of producing portable software.
It is clear that if software is to be portable, it must be
written in a source language that does not contain
any references to processor-dependent information.
However, the programmer of microprocessor-based
systems is commonly concerned not only with what
is to happen but also with the hardware dependencies
of how it is to happen. Consequently, a myriad of
hardware details is scattered throughout the typical
application program. In another paper' we proposed
that effective code production for microprocessor-based
systems requires the separation of code into
interfacial and algorithmic parts (briefly mentioned
above), with specialized linking code forming the
bridge between the two. The algorithmic software,
having had hardware dependencies removed, lends
itself to implementation in .a higher-level
language. The algorithmic code can be developed by
"pure" programmers, leaving the development of in-
terfacial code to those with hardware comprehension.
The interfacial code must be rewritten for each hard-
ware configuration. But the algorithmic code is in
principle transportable.

The ideas we describe here have been applied to
software development for the Oznaki Project. In Oz-
paid., microprocessor technology has. been used to
construct interactive "models" of mathematical
systems. In these computer models/the student pro-
grams the activities of robots called "Naleis," which
create patterns and designs, thread mazes, and chase
targets about a TV screen. The tiny languages in
which the student programs these t-Takis are intended
for implementation on exceedingly low-cost con-
trollers.* For the moment, "personal computers"
based on 8080 and 6800 processors are used in pre-
liminary educational studies. The project has access

*With specificat ions s imilar to that of the Texas Instruments

"Speak and Spell" —see R. Wiggins and L. Brantingham, "Three-

Chip System Synthesizes Human Speech," Electronics, Vol. 51, No.

18, Aug. 31, 1978, pp. 109-116.

to a DECsystem-10 mainframe, used as the host
machine for our development system. The basis for
our implementation was the macro-cross-assembler
package CROZZ Zoi various microprocessors, In-
herent in the project is a. special interest in micropro-
cessor code production, update, and transport prob-
lems. The "highly extensible luverly language" —
HELL, based on macros for the DEC-10 Macro-10
macro-assembler, has been developed and used as the

prime implementation language. This language cBn
be processed to produce code for the DEC-10 itself (to
provide a variety of emulation we call high-level
emulation) as well as for the 6800 and 8080 pro-
cessors.

Interfacial and algorithmic code

We begin by discussing the code separation re-
quired prior to the implementation of a high-level
language software development system. To make
any headway on the problems of code production and
update it is necessary to examine the nature of the
software changes induced by hardware configuration
changes. Major portions of any well-structured code
are unaltered by such changes. To eliminate once and
for all the sheer messiness of having to make in-
numerable tiny alterations in what had been func-
tional code, we need to erect a barrier within the sof t-
ware. Outside this barrier lies software not affected
by hardware configuration changes. This software is
essentially configuration-free; we call it algorithmic
software. Within the barrier lies the interfacial soft-
ware, including such items as input, output, and tim-
ing routines, special execution mode routines, and in-
terrupt handlers. Our development strategy requires
that properly constructed programs should never
directly penetrate the barrier between algorithmic
and interfacial code. Instead, all communication be-
tween the two must be via specially provided bridges
or links.

This modularity can be extended further to solve
the update problem for a system where distinct func-
tion code is placed in different ROMs. If one ROM is
altered for whatever reason, one wishes to avoid hav-
ing to alter other ROMs. This can be achieved if each
ROM has an associated link wall to provide definite
bridges into the code contained within it. Thus a par-
ticular ROM can be replaced without affecting the
other ROMs, provided that the link wall is maintained.

These bridge specifications can be viewed as a shift
in the normal division between hardware and soft-
ware. Hardware designers have traditionally seen
their role as being limited to the production of func-
tional electronics. They then present software
writers with a precise hardware specification replete
with bit-specific details. As a result, changes in hard-
ware require an extensive software amendment effort
with it impractical to update existing units in the
field. And yet there will be innumerable possibilities
for economies and improvements, resulting from the
variety of combinations of logical functions available
on single chips, together with those which will

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

February 1979 55

become available within the life of a product. With
the traditional demarcation between hardware and
software if, is difficult to take advantage of these
possibilities. However, by creating a demarcation between
the algorithmic and interfacial code an effective
simplification of the update problem can be obtained
For example, the first version of a product might use

software to perform serial I/O whereas a later
version might use an enhanced chip to perform the
aerial I/O in hardware. In this case, new interfacial
code would have to be produced, but existing
algorithmic software would function on the new hard-
ware without alteration, More importantly, any new
algorithms programmed for the device would func-
tion on both the nee e !.trait and those already produced.

Another way of looking at this can be gained from a
study of any piece of applications software. All such
programs have as their basis a conceptual hierarchy

of operations. The programmer uses the control

structures of the particular programming language
to organize these operations to provide the desired
performance. When considering assembly language
programming, the lowest=level operations are the
machine instructions provided by the particular pro-
cessor (ignoring the possibility of microprogram-
ming). The next highest level of operations consists
of those sequences of machine code required to con-
trol or interact with the various devices connected to
the processor, The next level comprises those
routines providing the logical operation of these
devices. Examples could be routines to "output a
character to a video terminal" or "wait for the next
character from the keyboard." it is important to ap-
preciate this change to a logical operation level. It is
irrelevant to the calling code whether the video ter-
minal is memory-mapped or connected by a serial
data link, or whether the keyboard is buffered or un-
buffered. It is these details that make up the code
bodies of the operations at this level. All more com-
plex operations, constructed in terms of those primi-
tive logical operations, must themselves be logical in
nature and therefore hardware-independent, Follow-
ing the conception and specif ication of these
primitive logical operations, it, is clear that the code
implementing them in terms of the available hard -
ware belongs to the interfacial category, .while the
code written in terms of the primitive operations
themselves belongs to the algorithmic category.

Thus the first problem in system development is
deciding the sorts of primitive logical operations
needed for the intended application domain. This is a
very important and difficult procedure and should be
approached after the program family outline has
been completely clarified. The next step is specifica-
tion of the memory space partitioning between the in-
terfacial and algorithmic software, and the details of
the bridges between them. These bridge specifica-
tions require careful construction.

2
 Indeed, to sim-

plify update problems we must employ elaborate
strategies to give these bridges a physical existence

ire memory (as f red location address tables, for exam-
ple). As a result of making these decisions the soft-
ware problem can be neatly divided into two parts.

The details of the interfacial software are irrelevant

to algorithmic programmers, who only need to know

the bridge specifications. Likewise interfacial code

programmers are only concerned with providing the

functions inherent in the bridge specifications, in

terms of low-level hardware-oriented code. It is here

that the hardware-to-software boundary can be speci-

fied and re-specified, as such decisions concern only

in te rf acia l code p rogrammers and hardware

designers.

Macros

Macros are traditionally introduced as a means of

extending the instruction set of an assembler. To

quote the now classic example (wherein the expan-

sion is for the M6800 processor) the definition

DEFINE SUMS P1,P2,P3)

<

LDA A,P
-
I

ADD A,P2

STA A,P3>

implies that the statement

SUMS (100, NUMB, RESULT)

occurring in the assembly code will generate the

machine code corresponding to

LDA A,100

ADD A,NUMB

STA A,RESULT

This adds (modulo 256) the contents of the bytes ad-

dressed by the first two parameters, in this case 100

and NUMB, and stores the sum in the byte addressed

by the third parameter—in this case RESULT. As all

three parameters are assumed to be addresses, both

NUMB and RESULT would have to appear as labels

somewhere in the assembly.

Clearly the macro definition has added an entirely

new and higher-level construct to the assembly

language. Moreover, the cell or invocation of sums

contains no processor-dependent information. By

substituting a different definition of SUMS, the same

source statement could be made to produce valid code

for any other processor. For example, for the IN8080

the definition of SUMS would he

DEFINE SUM8(P1,P2,P3)<
LDA P1
LXI H, P2
ADA M
STA P3>

or more interestingly, for the DECsysterri-10

DEFINE SUM8(P1,P2,P3) <

MOVE 0,P1
ADD 0,P2
ANDI 0.fB11111111
MOVEM 0,P3>

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

56 COMPUTER

Note that for the DEC-10 we have arbitrarily chosen
to use register zero as an accumulator, and we have
taken care to appropriately model the 8-bit nature of
the operation implemented.

From this it is evident that if the basic operations
required for a group of algorithms are known,
development of machine-independent software
becomes possible by defining suitable macros for
these operations. There are four points we should
note about the above examples. We will discuss each
in detail later.

 In order to expand the resulting source software
for a given processor, it is necessary to have a
macro-cross-assembler for that processor run-
ning on the host machine. Further, to allow for
portability of algorithmic software between dif-
ferent processors, it is mandatory that each
cross-assembler support identical assernbly-
time and macro facilities.

 The simple example above might leave the im-
pression that the resultant source code will look
like a list of Fortran-type subroutine calls. This
is certainly not the case, as it is possible to im-
plement structuring constructs such as

IF (RELATION) THEN

ELSE

ENDIF
and

LOOP

EXITIF (RELATION)

ENDLOOP

 this is readily available in the form of the host
machine's macro-assembler. In the past it has been
little recognized that adding macro facilities to an
assembler converts it into a universal assembler. It is
universal in that the macro facilities provide the abili-
ty to assemble programs for processors other than
the one for which the base assembler was intended.
To clarify this, consider the output listing from vir-
tually any assembler. It consists of some numbers,
usually on the left of the page, and some symbols,
usually on the right. In an ordinary assembler, the
process of assembling embodies preset rules for
translating the symbolic code (source code) into the
numeric code (object or machine code). The addi-
tion of macro facilities to the assembler allows the
user to define new rules for specifying the relation-
ship between the symbols and the numbers. Given
that the machine code for any processor can be
represented by numbers, and given that these
numbers can be made to appear in the output listing
as a result of user-specifled symbols appearing in the
source text, it is clear that a macro-assembler is a
universal assembler.

We demonstrate the use of a macro-assembler as a
universal assembler by reference to Macro-10, the
resident assembler for the DEC-10 mainframe. In the
following source file macros are defined to have the
names of certain IN8080 mnemonics. The pseudo-op
EXP appearing in this listing assembles a 36-bit word
equal to the following parameter:

TITLE EXAMPLE

OPCODE DEFINITION

DEFINE LDA(ADDR)<
EXP 032
EXP ADDR&377
EX? ADDR/400

using the facilities of a normal macro-assembler,
despite its usually restricted format for para-
meter parsing.

DEFINE
OUT(PORTK
EXP 323
EXP PORT&377

 The modularity of macros allows new
state-

ments, control structures, or data types to be

easily added to the implemented language. It

also permits refinement of existing -macros, and

thus allows improvements in the efficiency of

the generated code (to be made in parallel with

the development of the applications software).

 By maintaining a suitable library of macros for

host machine applications, algorithms can be

executed and tested on the host machine using

its existing debugging facilities.

DEFINE HALT<
EXP 166

CROSS ASSEMBLY

SALL
LOC 100
OPOR T= 5

START: WA CHAR1
OUT OPORT
LISA CHAR2
OUT OPORT
HALT

CHART: EXP "X"
CIIAR2: EXP

END

Macro-assemblers as universal X-assemblers

The basic tool in a microprocessor code develop-
ment system is the cross-assembler. To implement
systems as described in this paper requires the pro-
duction of cross-assemblers containing sophisticated
macro facilities. Fortunately, the means of achieving

This file consists of two parts. The first contains the
macros which define the target processor's opcodes,
which here comprise three instructions of the IN8080
instruction set. The second part appears as the nor-
mal input would to an IN8080 assembler. Submitting
this file to Macro-10 produces the listing at top op-
posite (note that numbers are in octal).

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

February 1979 57

The "object code" produced by Macro-10 appears
on the left-hand side of the listing and consists of two
parts, the value of the PC or word address, followed
the value of the object words. Macro-10 considers
these assembled words to be 36 bits each and prints
them in DEC-10 half-word format. For our purpose
the fact that Macro-10 treats these words as 36 bits is
irrelevant. Instead we see on the listing the PC value
corresponding to the address in the microprocessor's
memory, and next to this the specification of the
value of the byte at that address. This l isting
represents a valid cross-assembly of the 1N8080 sym-
bolic code, given in the source file. Thus Macro-10, or
any other macro-assembler, can be used as a univer-
sal assembler.

However, the listings generated by Macro-10 are in
a format designed to enhance intelligibility of
DEC-10 machine code rather than 8-bit micro-
processor code. In order to construct a more useful
cross-assembly utility, the following facilities have to
be provided;

 hex representation of numbers in the input file;

6 h ex r ep res en t a t ion in ou tpu t o f P C and
"assembled code";

 error flagging of host machine operators and
other predefined symbols meaningless to the
target processors if they appeared in the source
text without having been assigned new values
by the user);

 suppression of undesirable pseudo-ops irrele-

vant to the target processors;

 ability to output error messages onto the listing
from the opcode-defining macros;

generation of appropriately formatted load
files; and

 ability to load libraries of opcode-defining

macros, rather than having to insert them at the

start of each source program.

Only the last of these facilities is readily available in
Macro-10. In order to implement the CROZZ macro-
assembler package for the DEC-10, we wrote a pre-
editor and a post-editor. The pre-editor simply scans
the input file looking for numbers not

-
flagged for

radix and replaces them with the equivalent octal
representation. The post-editor is- slightly more corn-
plicated. As well as scanning the output file convert-
ing octal numbers back into hex format, it tidies up
the object code presentation. It also provides rou-
tines for generating appropriately formatted load
files from the data edited on the list file, as Welt as
routines for allowing multiple object bytes to appear
on the same line. By implementing these

.
 Editors in

DEC-10 assembly language and taking advantage of
inter-task communication facilities, we attained a
tidy and efficient cross-assembly package support-

EXAMPLE MACRO %5012721 13:09 1
-
6-FEB-78 PAGE1

OUTPUT MAC 16-FEB-78 13:08
TITL E E XAMPLE

 ; ; OPCODE DEFINITION

DEFINE LDA(ADDR) <
EXP 032
EXP ADDR&377
EXP ADDR1400

 >

DEFINE OUT1PORT) <
EXP 323
EXP PORT&3777

 >
DEFINE HALT<

EXP 166

 >

.

; ; CROSS ASSEMBLY
; ;
SALL

000100 LOC 100

 000005 OPORT= 5
000100 000000 000032 START: LDA CHARI
000101 000000 000113
030102 000000 000000
000103 000000 000323 OUT OPORT
000104 000000 000005
000105 000000 000032 WA CHAR2
000106 000000 000114
000107 000000 000000
000110 000000 000323 OUT OPORT.
000111 000000 000005
000112 000000 000166 HALT
000113 000000 000130 CHAR': EXP "X"
000114 000000 000101 CHAR2: EXP

 END
NO ERRORS DETECTED
PROGRAM BREAK IS 000000
CPU TIME USED 00:00.224
3K CORE USED

ing the 6800, 8080, 6502, and SC/MP. In CROZZ the actual target

processor information is contained in macro libraries for each

processor, so that extension to other processors entails only

writing such a macro library file, To demonstrate the effectiveness of

the editing we present a CROZZ output listing for the previous

example:

OZNAKI PROJECT CROSS ASSEMBLER OUTPUT

EXAMPLE

 OUTPUT LST 16-FEB-78 15:15
TITLE EXAMPLE

OPCODE DEFINITION

SEARCH X8080

; ; CROSS ASSEMBLY

SALL

0040 ORG 40
 5 OPORT=5
0040 3A4000 START: LDA CHAR1
0043 0305 OUT OPORT
0045 3A4C00 LDA CHAR2
0043 D305 OUT OPORT

004A 76 HALT
00413 58 CHAR1: EXP "X"
004C . 41 CHAR2: EXP
 END
NO ERRORS DETECTED

PROGRAM BREAK IS 000000

Al3SLUTE BREAK IS 000161

CPU TIME USED 00:00.226

3K CORE USED

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

58 COMPUTER

The technique detailed above—for using a macro-
assembler as a universal X-assembler—is not to our
knowledge described anywhere in the literature. We
discovered this method in April, 1976. It appears to
have been discovered (or perhaps rediscovered)
elsewhere at about the same time—thereby proving

that necessity is the mother of invention. In fact the
technique might well have been discovered at any
time since the first macro-assemblers were im-
plemented in the early '60s. It is surprising that the
early workers Halpern

3
 and Ferguson

4
 do not men-

tion the ability of a macro-assembler to function
(albeit crudely) as a "meta-assembler" in which the
user can specify mnemonics and opcodes.

For completeness we mention another technique
for cross-assembler construction described in a
number of recent papers.

5
 In this approach the user

examines the structure of the coding of an existing

assembler, and alters the table of mnemonics, the fac-
tors related to word size, and the address arithmetic.
Of course the better assemblers with enhanced macro
facilities are not in the public domain, so only in
special circumstances can this method yield a cross-
assembler with advanced facilities and efficient exe-
cution.

Jenkins and Tyers
6,7

 have assessed a number of
proprietary cross-assemblers for various processors.
These assemblers, written in Fortran, offer the user
the most rudimentary facilities and yet compile code
10 to 40 times slower than CROZZ. This gross ineffi-

ciency has generally been compounded by the use of
table look-up to convert from ASCII input and out-
put to an internal EBCD representation.

In comparison, by using the macro technique
described above, one quickly obtains a well-tested,
sophisticated cross-macro-assembler. It is well-
tested in that once the opcode-defining macros are
correct, the cross-assembler will have only those bugs
which exist in the host assembler. Where the host
machine has been in service for some years, such bugs
are (generally) insignificant. It is "sophisticated" in
that such a cross-assembler automatically possesses
all the assembly-time macro features of the host
assembler. There only remains the question of im-
plementation time. While the library of macros for a
particular processor can initially be written in a day,

our experience suggests that to add a tested, de-
bugged, and documented cross-assembler to the
CROZZ system requires approximately two man-
weeks, nearly all of which is spent in the testing and
documentation. The pre- and post-editors can, in the
first instance, be as simple as possible, be written in
any convenient language, and represent a few days
work at most. The emphasis here is to get a develop-
ment system available for the production of micro-
processor code and then to refine it where it is
necessary or desirable. The editors used in CROZZ
have undergone several such developments, with the
latest version written in DEC-10 assembly language
for maximum speed. What is important is that these
developments were made as and when time became
available, and in no way interfered with the availabili-
ty and use of the system.

Macro-assemblers as universal X-compilers

The previous section demonstrated that a macro-
assembler can be used as the basis of a Microprocessor
code development system. Additional advantages
accrue from the fact that the resultant cross-
assemblers contain sophisticated assembly-time

macro facilities such as conditional assembly pseudo--
ops. Using these it is possible to define code-
structuring macros that in effect allow code to be
written in a special-purpose, problem-oriented, high-level
language. As an example we demonstrate the
construction of (run-time) conditionals. Consider an
implementation of the Algol statement:

IF JILL = JOE THEN
BEGIN FLIP END

ELSE
BEGIN FLOP, END;

in terms of the macros IFEQ, THEN, ELSE, and ENDIF

1FEQ JILL, JOE
THEN

FLIP
ELSE FLOP

ENDIF

It is helpful to compare the desired source text with the

Intel 8080 assembly language code required to

implement its function:
LDA JILL IFEQ JILL,JOE

LXI H,JOE
CMP M
JNZ LABEL(1)

 THEN

FLIP FLIP

JMP LABEL12)

LABEL(1):

FLOP ELSE FLOP

LABELI2): ENDIF

Clearly two labels, which we have signified by LABEL 11

and LABEL (2), have to be created by CROZZ-8080 to mark

the beginning and the end of the "flop" coding. For the

moment we overlook the possibility of nested conditionals,

and write macro definitions that would correctly assemble

the left-hand side above:

DEFINE IFEQ(UNK
N=N+1
LDA U
LXI H,V
CMP M
JNZ LABI .(N)>

DEFINE THEN< > ;THE IS A NULL OP

D EFINE ELSECVK
LABELCN1=.
N=N+1
JMP LABI LAN)
Y>

D:FINE ENDIF<
LABEL(N)=.

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

February 1979 59

In these definitions the period "." stands for the pre-
sent value of the program counter. To make the above
definitions valid, at the start of the program the index
N would have to be initialized to zero. After this, the
vector of created labels, LABEL W, LABEL (2), LABEL

13), - would be augmented each time IFEQ was called.
Actually, CROZZ does not have available the nota-
tion we are using of a vector of labels. Instead it is
necessary to define a macro which accepts the index
as an immediate evaluation parameter, and using
character concatenation, generates a unique symbol.
The 'most important point is the maintenance of a
one-to-one correspondence between the index values
and the generated symbols.

The definitions given above will work even if the
ELSE is present for any number of consecutive condi-
tional statements but fails for nested conditionals.
For example, in the following construction:

IFEQ A,B

THEN FLIP

ELSE IFEQ C,D

THEN FLOP

ENDIF

ENDIF

the final label inserted by the outer ENDIF would have
the same name as the label inserted by the inner EN-

DIP. However, nesting of IF „ THEN . ELSE . . . con-
structs satisfies the usual principles of block-
structuring, so there is a way around this which is
simple in conception but requires careful coding to
implement. Suppose the macro SPUSI-I places the MP.

rent value of the variable IFNUMBER on an assembly-
time stack. And suppose further the macro $POP sets

N equal to the top of the stack when it pops the stack.
Using these two new macro-pseudo-ops, the prey ions
definition of IFEQ can be refined as follows:

DEFINE IFEQ(U,V)<

IFNUMBER=IFNUMBER+ 2
$PUSH ;SAVE PREVIOUS N

VALUE
N =IFNUMBE R

LDA
LXI
CMP
JNZ LABEL(N)>

DEFINE THEN< > ; ;THEN IS A MACRO NO-OP

DEFINE ELSE(Y)<
LABEL(N)=.

N=N+ 1
JMP LABEL(N)
Y>

DEFINE ENDIF<
LABEL(N)=.
SPOP :RESTORE N>

Using these macro definitions, the vector LABEL (N)

will have "holes" corresponding to the missing ELSE,

which is of no consequence. The generalization of
IFEQ by an IF macro, that takes as one of i ts
arguments such character strings as EQ for equal, LE

for less than, GE for greater than, and the like, is very
straightforward.

DEFINE IF(ADDR1,REL,ADDR2)<

IFNUMBER=IFNUMBER+2
$PUSH
STEMP=1
N=IFNUMBER
IFIDN<REL><EQ>,<

LDA ADDR1

LXI H,ADDR2
CMP
JNZ LABEL(N)
$TEMP=0

IFIDN<REL>-(GE>,<
LDA ADDR2
LXI FLADDR1
CMP
JM LABELIN)
TEMP-Q >

IFIDN<REL><LE>,<
LDA ADDR1
LXI H,ADDR2
CMP
JM LABEL(N)
STEM P =0 >

1FN $TEMP, <PRINTX ERROR IN IF> >

This definition includes simple error reporting code
involving STEM?. In CROZZ macros detecting errors
set particular bits of the DEC-10 word, and the out-
put listing is flagged for error type.

Note how the assembly-time stack serves to pass
messages from one macro to another. Such a use of an
assembly-time stack was made by Herman-Giddens, et
al,' in adding block structures to POI'-11 assembly
language. In the macro definitions presented above,
the parameters are required to be (16-bit) addresses.
While this is adequate for simple purposes, a signifi-
cant high-level language must permit expressions in
lieu of simpler parameters.

In HELL, the macro-based implementation
larigua.ge used in the Oznaki Project, generalized ex-
pressions are parsed via a carefully arranged set of
recursive definitions that also exploit the assembly-
time stack. This expression parser is effectively as com-
plex as those in other higher-level languages, but
otherwise, Macro-10 supplies all other bookkeeping
support so that the implementation labor is small.

The detailed features of HELL are listed on the next

page, together with a demonstration program writ-
ten in HELL. This demonstration program controls a
rudimentary robot. The source listing has been used
to generate code to control the robot from the main-
frame DEC-10 and from microcomputers based on
both the 6800 and 8030 MPUs.

There have been many papers published concern-
ing the use of macro-processing for language im-
plementation support, most recently Furgerson and
Gibbons,

9
 Rechenberg,

1
° and Tanenbaum." Most of

these have described the use of a general-purpose
macro-processor with features and refinements not
available in macro-assemblers. However, we have
found no references in the literature to the use of a
macro-assembler as a universal Assembler, or more
importantly, as a cross-compiler supporting the
development of transportable code. One notable
feature possessed by powerful macro-processors is
that macro definitions include specification of

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

Statement

Code segmentation

DATA NUMBER Locate following code into RAM

memory and provide the specified

number of words of memory for the pro-

gram execution stack.

Description

PROGRAM TITLE Specify the title for the listing, make

the current address the program start
address and insert all necessary ini-

tialization code.

Control Structures

IF (relation)

INSYMBOL(variable) Generate code to obtain the byte
pointed to by the current streams
pointer. increment :he pointer and
store the obtained byte in the named
variable.

Generate code to evaluate the in-
dicated relation and conditionally jump

to the address of the appropriate ELSE

or ENDIF when the relation is false.

ELS2 insert a jump to the appropriate ENDIF OUTSYMBOL(expr)

and supply the label used for the jump

in the previous IF.

SKIPSYMBOL(ex.pr)

BACKSYMBOL(expr)

LOOP Define a label which will be used in the
lump statement inserted into the code

by a following ENDLOOP.

EXITIF (relation) Generate code to evaluate the in-
dicated relation and to conditionally

jump to the appropriate ENDLOOP

when the relation is true.

Insert a jump to the appropriate

previous LOOP and define the label
referenced in the previous EXITIF.

ENDLOOP

PROCEDURE name Define a macro with the specified name

which performs a subroutine jump to

the current address, (the address of the

line on which the procedure statement

occurs).

Implementation language macros

The macro-based implementation language HELL has the follow-

ing macros for use in application programs. Note that the original

versions of the Oznaki Project's software were written in DEC-10

Algol60. with patched-in machine routines. In order to simplify the

rewriting of this ere-existing code. HELL acquired perforce an

Algol-like appearance. The list below does not include the macros

for expression parsing, with names commencing with "%%".

CONSTANTS Locate fol lowing code into ROM
 memory.

GOTO label

SWITCH VAR,TOP,
BOT,<label list >

Data statements

INTEGER
<list of names >

STREAM name, length

ASSIGN name,<expr >

SELECT name

Generate code to perform a jump to the
specified address.

Generate code to check that the value

of the given variable between the
limits `TOP' and 'BOT' and if so to
transfer to the appropriate label from
the list.

Allocate consecutive bytes of memory
to store single byte integer variables
referenced by the given names.

Allocate a block of memory of the
specified length, addressable through
the stream manipulation commands,

using the given name (effectively a
string of single-byte integers).

Generate code to evaluate the spe-
cified expression and store the result
in the named integer variable.

Generate code to select the named
stream for subsequent manipulation.

Specify the end of the program and ap-

pend those library routines required for

the particular program.

Generate code to set the current
streams pointer to the start of the
stream.

FINIS
BEGINSTREAM

ENDlF Insert the label used in the preceding IF
or ELSE. -

Generate code to evaluate the spe-
cified expression and store the single-

byte result in the ariOre3s pointed to by

the current streams pointer, and then
increment the pointer.

Generate code to evaluate the spe-

cified expression and to increment the
current streams pointer by this value.

Generate code to evaluate the spe-
-cified expression and to decrement
the current streams pointer by this

value.

RETURN Generate. code to perform a subroutine
return.

Application program demonstrating HELL syntax

TITLE OZJUNIOR
:COMMENTS PRECEDED BY ";” ON SAME LINE
SEARCH X8Gt30 ; Specifies processor
SEARCH WIZBOX ; Specifies MACHINE

;Configuration
Linkwall, Bridges,

and library
macros

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

:ASSEMBLY TIME VARIABLES LOOP
NULL-0 EXITIF (MODE.EG,<VALUE,O>)

LINEFEED = OA • PAUSE(<VALUE,60>)
CARETN 0D ASSIGN MODE,<SUB,MODE,<VALUE,1>>

ENDLCIOP
DATA (10) ;STACK OF LENGTH 10 NEWLINE

:PLACES CODE FOLLOWING IN RAM ENDLOOR
GOTO NEWCM 0

VARIABLE <CMD. NUMF3, MODE, MTRCMD >
:DECLARATION OF SINGLE-BYTE VARIABLES FINIS

CONSTANTS :LOCATES SUBSEOUENT CODE IN ROM

PROCEDURENEWLINE
:USES LIBRARY ROUTINE OUTCHAP.
OUTCHAR(<VALUE LiNEFEED>i
OUTCHARi<VALUE.CARETN>)

<VALIUE.NULL%I
E.NULL>

OUTCHARKVALUE,NULI.>)
RETURN

PROGRAM WIZ:
;INITIALIZATION ROUTINES INSERTED HERE BY HELL

NEWCMD: ASSIGN MODE, <VALUE,0>
ASSIGN NUMB,<VALUE.1>

INCMD: INCHA.R(CM0)
OUTCHACMD)
IF WMO.E0.<VP.LUE.-H">)

ASSIGN M3K1E.<1011,MODE,<VALUE2.>>
GOTO INCMD

END:F
IF f_CY,D.E0.<VALUE.-A->)

ASSIGN MODE.<1CR.MODE,<VALlIE.1>>
GOTO

ENDIF
IF 1.<CMD.GE,<VALUE.'*0->>.AND,<CMD,LE.<VALUE,"9">>)

ASSIGN NUMB,<SUB.CMD,<VALLIE,"0">>
GOTO INCMD

ENOIF
IF (CMO,E0,<VALUF,"F">)

ASSIGN MTRCMD.< VALUE,60>

ELSE
IF (CNID,E0.<VALLIE."B">)

ASSIGN MTRCMD.<VALLIE.6C>

ELSE
IF (CMD,E0<VALUE,"R">)

ASSIGN MIRCMD,<VALUE.68>
ELSE

IF (CMD.E0.,<VALUE,"L->)
ASSIGN MTRCMD,<VALUE,64>

ELSE
IF (CMD,E0.<VA1.UE."3->)

ASSIGN MTP.CMD,<VALUE,70>

ELSE
GOTO NEWCMD

ENDIF

ENDIF
ENDIF

ENDIF
ENDIF

MT ROUT. ASSIGN MTPCIii1D,<A0D.MTROMD.MOD✓
NEWLiNE

LOOP
EXITIF IF NUMB LE<VALUE.0>)

 ASSIGN NUMB <SUE,NUMS,<:VALLJE,1>>
ASSIGNN MOCE.VALLIE,1:7,
LOOP

CUTONAMM-fRCC!0)
EXITtF FO<VALUE:CA--

PAUSP,<VALtiE.40>)
MODE,<ADD,MODE,<V.4LUE,1>>

ENDLOOP

The above program accepts and decodes character commands
from a keyboard and outputs control commands to a small robot.
Keyboard commands are" F" for forward, "B" for back, "R" for right
turn, "L" for left turn, "6" for sit (motors off for specified duration).

and "0" to "9" specifying the number c repetitions. There are also
the "mode" modifiers. "A" for turning on the robot's lights and "H"

for honking a horn. A typical keyboard command steam would be
2HF 3ARBHAS, which would be translated by the Ozjunior program
so that the robot takes 2 forward steps while honking, then turns
through 3 unit turns with lights on. etc. The Ozjunior program is a

cut down version of the program Oz. The complete Oz program in-

cludes facilities for the student user to define and call by name
macros of robot and display commands. Note that the above pro -

gram, written in a 1976 version of HELL. required actual numbers to
be preceded by the symbol "VALUE-". This device, reminiscent of
the Lisp quote, was required because of a bug in the imp lementa-
tion of the Macro-10 pseudo-op

Another example of Oznaki software is provided by the *game
Wham, in which the user directs a "robot" called a "Naki" around a
TV s c r e en . The N ak i ha s t he app ea r a nc e ^ ,> ,V o r <
d epend ing on its heading, and deposits asterisks us it moves.

Wham combines a discrete geometry with calculator maths.

The above printout of a TV screen for Wham was taken after the
user had defined V, W. and X macros, and used the X macro to draw

the asterisk "squiral." (The parameter A is the number in the small
square accumulator on the right.) The HELL program for Wham
assembled in approximately 3K byes for 8080 and 68OO pro-
cessors, so Wham is indeed t iny To achieve portability, the action

of putting a character on a screen was used as a logical operation
whether achieved by placing a location in memory for memory-
mapped video or by outputt ing an appropriate sequence of
characters to an external terminal. A copy of the screen was stored in

data streams in approximately 5K byte of memory leading to
essential redundancy in the memory-mapped video architecture.

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

62 COMPUTER

parameter scanning. This greatly simplifies the im-
plementation of higher-level languages, as instanced

by the possibility of defining a single macro-called IF.

This macro, when encountered, scans the source text
looking for the symbol THEN, which delimits the rela-
tion, and then continues the scan to find the ap-
propriate ELSE and ENDIF symbols. Thus the first
parameter of the IF macro is the relation, the second
parameter contains the statements to be executed
when the relation is true, and the optional third
parameter contains the statements to be executed
when the relation is false. Using these parameters the
IF macro cari immediately output code appropriate to
the complete conditional statement. A macro-
assembler usually does not have such parameter
parsing facilities. Instead it is necessary to define
separate macros as described and provide an
assembly-time stack for communication. This may
not necessarily be a disadvantage when it comes to
compile-time efficiency. The Oznaki Project pro-
grams using HELL assembled at eight lines per sec-
ond, which compares well with Tanenbaum's one-to--
two lines per second using a general-purpose macro-
processor. As he reported, most of the processing
time is consumed analyzing expressions. We found
the assembly speed to be critically related to the effi-
ciency of the expression macros; we expended con-
siderable effort in determining their optimum con-
struction.

Macro modularity

One of the recognized advantages of a macro-
implemented language is its resultant modularity.
The macros defined to implement a given source
language feature are in general completely indepen-
dent of other macros defined to implement other
language features. Adding a new statement to the
language only requires the definition of an ap-
propriate macro, assuming of course that this new
feature is not meant to interact with existing
features. A corollary of this is that continuing refine-
ment of existing macros can proceed in parallel with
program development. Refinement here refers to im-
provements in the efficiency of the generated code, as
measured by code size or execution speed. Consider
the following improved I N8080 definition of the SUM8

macro mentioned above:

DEFINE SIJM$P1,P2,P3K
!FILM < P1 >< P3>,‹

LDA P2
1,X1
ADA
MOV >

IFDIF < P1 >-< PS >,<
IFIDN < P 2 r

LXI H,P3
ADA
MOV M,A

IFDIF < P2 :><", P3
LDA Cl
LXI H,P2
ADA
STA P3 > >>

This new definition generates only 5 bytes of code to
perform the sum operation, whenever one of the first
two addresses is the same as the result address. In
other cases it generates 10 bytes of code. The important
point about this example is the fact that the im-
provement can be conceived of and incorporated into the
system at any time. It is not necessary to produce the
best possible macro implementations at first. Instead, the
quick production of a working library of macros
performing the specified functions can be the initial
objective. This then allows the development and
testing of the applications software to begin. Once
this has been achieved work can proceed with refining
the macro implementations as a separate project. As
each improvement is made the old macro definition is
simply replaced by the new, after which all
subsequent compilations will incorporate the
enhancement.

Another benefit of this language modularity is a
clear correspondence between the source and object
code. In order to understand the code generated by a
source statement only those relevant macros need be
considered. In fact, the identification of source code
with object code is contained precisely within the
definition of the macros concerned. We feel that
within the framework of producing code for micro-
processor controllers from high-level languages, it is
advantageous for programmers to have a clear under-
standing of the object code produced by each source
statement. This understanding is strengthened by
the tight binding of source and object code on the
listings generated by the macro-assembler.

The disadvantage of strict modularity in the ac-
tions of separate macros is overhead. Such overhead
is incurred by the inability to store results in registers
between statements. This is not an unavoidable
disadvantage of macro-implemented languages, but
in the initial development for the Oznaki Project no
attempt was made to overcome it. Apart from this,
the overall structure of the resultant program code is
highly optimized. Where applicable, macro state-
ments merely expand to subroutine calls to library
software, automatically appended to individual pro-
grams if required (e.g., I/O routines, table lookup and
computed GoTos). The coding of the tests and bran-
ches involved in the st ruc ture IF . . . TH E N . . .

ELSE . . . ENDIF is in most cases equivalent to hand-
produced code. (The system implemented fails to
utilize compaction possibilities that arise when the
same variable occurs in different sub-expressions.)
At the source program structure level the procedure-
calling and generating macros permit multiple entry
points to routines, and allow optimal use of byte-
saving construction employed widely in hand-assem-
bled code.

The HELP system

The ideas presented above have been put together
as a comprehensive design strategy, called "HELP
for microprocessor software development...

12
 HELP

involves using an advanced mini (or mainframe) as

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

February 1979 83

PROGRAM
SPECIFICATION

SELECT MODULES

FAMILY SPECIFICATIONS

WRITE MACROS FOR
HOST MACHINE

PROGRAM
 BUGS

ASSEMBLE
 AND TEST ON HOST

MACHINE

' al SIGH L;LV7.1.1

"BUGFREE

O.K.

I TESTED TARGET I
CODEWARE

1•
•

f.;D,!: LE' DEFINITIONS WRITE MACRO LIBRARY

BUGS

X ASSEMBLE

the host machine in a multi-target development
system. It involves the code parti tion scheme
described previously, with the algorithmic code im-
plemented in a macro-based higher-level language.

HELP involves a technique for program testing
which we call high-level emulation. The traditional
emulator creates an image of the target-machine
memory space and registers. It then takes each in-
struction of the target-machine code and executes it
interpretively. Thus in the conventional emulator
there is a one-to-one relationship between states of
the target machine and of the host representation.
With high-level emulation, the initial development,
testing, and debugging of the algorithmic code is carr-
ied out on the host machine, using an appropriate
Library of macros. Whenever such a program is run,
there are two possible categories of bugs: •

 low-level bugs—errors in macro definition; and

 high-level bugs—errors in the high-level pro-
gram.

In both categories syntax errors (largely typos) are
possible. It is difficult in a macro-based system to
check statement syntax in any global manner and
provide the user with specific error messages. How-
ever, when syntax errors occur, it is often apparent
from the listing,. and invariably the tight binding of
source and object code leads to rapid location. When a
program written in terms of processor-independent
macros is tested and validated, there are two dif
ferent products:

 tested code for a particular processor; and

 tested high-level software.

Clearly the way to use high-level emulation is to test
the software first on the most convenient pro -
cessor—which might well be the host machine. If the
relevant macros for a given target processor have
been previously tested, then the macro-processor can
immediately assemble valid code for the new pro-
cessor. Otherwise, if new macros have to be written
for a new processor, as has been the predominant ex-
perience in the Oznaki Project, one can expect en
assembly to have to debug the new macro definitions.
The pattern of software development involving use of
high-level emulation is shown in Figures 1 and 2.

The picture of software development just given
describes the actual development of much of the Oz-
naki Project software, which was used in school ties
in 1977.

133
' Despite the fact that we carried

-
the double

burden of implementing both the development
system and the actual application programs, there is
no doubt that there were significant savings by pro-
ceeding in this way. Henceforth for us, and for anyone
who might use the Oznaki development system,
there is available an extensive library of debugged
macros for the DEC-10, and for the 8080 and 6800
processors. III

1

I TESTED NIGH LLVEL SOFTWARE I

rtgun 1. The diagram illustrates the production of tested high-level
software for one of a "family" of similar programs. For such a family, a
common sat of macros can be defined.

NOTE

NEW MACRO LIBRARY HAS BUGS

OLD LIBRARY FEW BUGS

FigUrtl. 2. Hart), both the input of macro module definitions and of the
taste l high-ieval software are the starting points for producing sell-
for e pailicular large microcomputer. That this works is a result of

ca.roM CeLign of individual macro modules. This ensures that any givtra
high-lewd statement, when expanded for any of the processes.,

proda,..ce code performing similar functions.

References

1. H. A. Coh en and R. S . Francis , "HELP for
Microprocessor Software Development," Digest of
Papers, COMPCON Fall 77, Sept. 1977, pp. 196-200.

2. Ibid.

3. M. H. Halpern, "Towards a General Processor for Pro-
gramming Languages," CALM, Vol. 11, No. 1, Jan. 1968, pp.
15-25.

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979,

2nd Revised Edition, pp 199-210 Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64

64 COMPUTER

4. D. E. Ferguson, "Evolution of the Meta-Assembly
Program" CA CM, Vol. 9, No. 3, Mar. 1966, pp.
190-196.

5. P. L. Evans, "Fast Cross Assembler Production,"
Proc. DECUS Europe Conf., 1977, pp. 193-195.

6. G. K. Jenkins and P. J. Tyers, "Support Software for
Microprocessor Development," IREECON Int'l Conf.
Digest. Melbourne, Aug. 1977, pp. 122-124.

7. P. J. Tyers, Personal communication.

8. G. S. Herman-Giddens, R. B. Warren, R. C. Barr, and
M. S. Spach, "BIOMAC: Block Structured Program-
ming Using PDP-11 Assembler Language," Software-
Practice and Experience, Vol. E, No. 4, Oct.-Dec. 19'15,
pp. 359-374.

9. D. F. Furgerson and A. J. Gibbons, "A High-Level
Microprocessor Programming Language," Digest of
Papers, COMPCON Fall 77, Sept. 1977, pp. 185-188.

10. P. Rechenberg, "MUMS—A Machine Independent
Programming Language Consisting of 360 Assembler
Macro Calls," SIGPLAN Notices, Vol. 12, No. 9, Sept.
1977, pp. 52-59,

11, A. S. Tanenbaum, "A General-Purpose Macro Pro-
cessor as a Poor Man's Compiler-Compiler," IEEE
Trans. Software Engineering, Vol. SE-2, No. 2, June
1976, pp. 121-125.

12. Cohen and Francis, "HELP for Microprocessor Soft-
ware Development."

13. H. A. Cohen, "Oznaki: A New Medium for Mathema-
ticians," in Learning and Applying Mathematics, D.
Williams, ed., Australian Association of Mathematics
Teachers, Melbourne, 1978, pp. 274-283.

14. H. A. Cohen and D. G. Green, "Evaluation of the
Cognitive Goals of Oznaki: Enhancement of Spatial
Projective Abilities," in ACM Topics in Instructional
Computing (a special publication of ACM Sigcue), A.

M. Wildberger and R. G. Montanelli, eds., ACM, New
York, 1978, pp. 69-90.

15. Cohen, H. A.. "The Oznaki Robotics Language Os,"
Proc. 7th Australian Computer Conf., Vol. 1, 1976, pp.
128-143.

Bibliography

1. Adamson, W. J., "Macro Processors and Language
Extension," Proc. 7th Australian Computer Conf., Vol.
1, 1976, pp. 1-11.

2. Barth, C. W., "STRCMACS—An Extensive Set of
Macros to Aid in Structured Programming in 360/370
Assembly Language," SIGPLAN Notices, Vol. 11,
No. 8, Aug. 1976, pp. 31-35.

3. Bennett, R. K., "BUILD: A Primitive Approach to the
Design of Computer Languages and Their Trans-
lators," SIGPLAN Notices, Vol. 11, No. 7, July 1976,
pp. 34-40.

4. Brown, P. J., Macro Processors and Portable Software,
Wiley, London, 1974.

5. Cohen, H. A., "Microprocessor Software Develop.
ment Using Macroprocessors," Proc. 8th Australian
Computer Conf., 1978.

6. Cohen, H. A., and Francis, R. S., "Programming Con-
s t r uc t s f o r M i c r op r oc es s o r s a n d B i t - S l i c e
P r oc es s o r s , " I RE E C O N I n t ' l Co n f . D i g e s t ,
Melbourne, Aug. 1977, pp. 119-121.

7. Cohen, H. A., and Francis, R. S., Oznaki Macro Cross

Assembler for 8080, 6800, SC/MP, 6502: Users Manual,

Revision 1.5, La Trobe University, Melbourne,

Australia, Nov. 1977.

8. Cole, A. J Macroprocessors, Cambridge University
Press, 1976.

9. Conrad, M., King, D., and Price, R., "The Integration of

Microcomputer Hardware and Software Development

Tools and Techniques," Digest of Papers,

COMPCON Fall 77, Sept. 1977, pp. 201-208.

10: Digital Equipment Corp., Macro-10 Assembler Pro-
grammer's Reference Manual, 8th ed., Digital Equipment
Corp., Maynard, Mass., 1974.

11. Gannon, J. D., and Horning, J. J., "The impact of
Language Design on the Production of Reliable Soft-
ware," Proc. Int'l Conf Reliable Software, Apr. 1975, pp.
10.22,

12. Intermetrics, A High Level Programming Language

for the Motorola Microcomputer, (product description—

PL/M 6800 product support), Intermetrics, Inc.. Cambridge,

Mass., Dec. 1977.

13. Kildall, G. A., "High-Level Language Simplifies
Microcomputer Programming," Electronics, Vol. 47,
No. 13, June 27, 1974, pp. 103-109.

14. Motorola, M6800 Microprocessor Application
Manual, 1st ed., Motorola Semiconductor Products,
Inc., Phoenix, Ariz., 1975, section 2-12.

15. Strachey, C., "A General Purpose Macrogenerator."

Computer Journal, Vol. 8, Oct. 1965, pp. 225-241.

16. Waite, W. M., Implementing Software for Non-
Numeric Applications, Prentice-Hall, Englewood
Cliffs, N. J., 1973.

17. Wright , R. J . , "Structured Programming in

Assembler," Proc. DECUS Australia Conf., 1976, pp.

1017-1019.

Harvey A. Cohen is a senior lecturer in
the departments of computer science
and applied mathematics at La Trobe
University, Melbourne, Australia. His
research interests include tiny lan-
guages, microcomputer graphics. design
strategies in system development, and
the nature of problem solving skills.
Since 1975 he has directed the Oznaki
Project, with the support of the

Australian Education Research and Development
Committee.

Cohen received his PhD in theoretical physics at the

Australian National University in 1965. He is the author of a

compendium of enigmatic problems—"dragons"--in

elementary mechanics.

Rhys S. Francis is a research student in
the department of computer science, La
Trobe University, Melbourne, Aus-
tralia. His research interests include
macroprocessors, software portability,
microcomputer architecture, language
design and implementation. His doctoral
thesis is in preparation.

Francis graduated with honors in
science from Monash University,
Melbourne, Australia in 1976.

