Using a conventionahacro-assembler as aulti-target
crossassembler and crossompiler, the authordeveloped portable
algorithmiccode for microprocessor controllers.

MacroAssenblers andvlacio-Based Languages
MicroprocessorSoftware Development

HarveyA. Cohen*
Rhys S. Francis
La Trobe University, Australia

Although most advanced minis and mainframeschaic hand assembly and direct machine loading. A
boast an assembler with advanced macro facilitieew companies and other organizations have at
only rarel is significant use made of such facilities. tempted to mininze this by restraining system
Yet, as we explain in some detail here, a macrodesigners to a pcular microprocessor, invariably
assembler is (almosf universal Xassembler. More One supported by a custom development system. One
over, through the development of an assentshe can safely predict that when new processors emerge
stack for message passing between macros (at maciavith specifically desirable capabilities), efforts at
expansiontime), a macreassembler can serve as astandardization on a particular processor will fail.
universal %compiler for higheflevel languages. And where acustom development system is used, the

We exploited these macassembler capabilities in
constructing a multtarget microprocessor develop
ment system resident on a DEO® mainframe. De
veloped for the @naki Educational Project, this sys

availability of basic utilities for any new processor
will depend on the marketing strategy of the
manufacturer.

To overcome these difficulties we advocate the use

Fr bruary1979

tem has as prime utilities CROZZ and HELL. Theof an advanceo_l mini or mainframe already fa_lmiliar to
macrocrossassembler CROZZ supports the E080the programming team as the host machine for a
6800, SC/MP, and 6502 processors, and can be rea@ﬂglt"target development system. This approach
extended by the user to other target processof@akes the host machine’s existing editing, file

e . management, baekup, and archival systems awvail
HELI.‘a? a "highly ex':znsmz Iluverly Iangqa;]ge 'SA? Iable. In order to follow this approach, cresssern
speciaipurpose mackbased language, with an Algolyars for may target processors must be available.

flavor. It yields code for the 8080 and 6800 pro | ater we will show how the macrassembler of the
cessors, as well as the DEI® mainframe. host machine can serve as a universassembler.

In order to meet in advance the challenges of minor Microprocessors pose a further challedge
hardware alterations ("update") ia particular development of costffective strategies for the imn
microcomputer, and the challenge of transportinglementation of highetevel languages for a mul
software from one microcomputer to another, wéplicity of processors. It is welknown from tradi
have developed a code development strategy callld@i "software engineering” that programming
HELP. HELP involves a code partition scheme, wit@ Nhigherlevel language reduces both the pro

well-defined links between what we terafgorithmic grammer'.l':,llelfglort and the nun:jber 9(; errc;]rs, ylelds
andinterfacial code. more intelligible prgrams, and mvides the opper

tunity for developing processendependent code.
Background

The continuing emergence of microprocessors and
bit--slice procesors presats a variety of challenges

‘Currently on studyeave at the Divisioffior Study and Research in
Education, MIT, Cenbridge. Mass02139

to those responsible for software development. One
of the most basic is simply to produce the utilities and
programming system in which to develop application
programs for a range possibly even a great
rang® of different processors. While awaiting the
developnent and/or availability of basic utilities,
many programmers have been obliged to resort-to ar

0018-9162'79 00: 053%$00.75 1979 1EE 53

54

However, traditional implementations of higgvel

languages require massive effort in the first plac

Moreover, the effort required to update such-la
guages for processor and architeetuariations
becomes ridiculous for the purposes of contyple

applications involving programs of only modest siz
For such ontrottype applications, we adcate the
development b a problemoriented, macrdaed

language for each family of applicatie. Each

language will consist of the same core of contr
structures and primitive data statements, to whic
are added only those constructs relevant to the p

18, Aug. 31, 1978, pp. 10916.

%0 a DECsystenl0 mainframe, used as the host
"machine for our development system. The basis for

our implementation was the macwmwossassembler

eﬁackage CROZZ Zoi various microprocessors; In

erent in the project is a. special interest in micrepro
cessor code production, update, and transport-prob
lems. The "highly extensible luverly languagé"
HELL, based on macros for the DE® Macrel0

Olfqacroassembler, has been developed and used as the

ime implementation language. This languagf#n

ticular problem area. The starting point for suct€ processed to produce code for the BEbQtself (to

development is the use of a ma@assembleras a

provide a variety of emulation we call higavel

universal Xcompiler. As the macrassembler emulation)as well as for the 6800 and 8080 pro
already supplies all the necessary parsing and odleSSOrs.

keeping support, programmers unversed in compiler

or systems programming can implement languages

in minimal time. However, since none of the texts ohnterfacial and algorithmicode
macio-processors present even rudimentary ideas on

how to use a macrassembler, we present an-in e pegin by discussing the code separation re

troductory discussion here.

Programming in a higthevel language immedialte
leads to the possibility of producing portable safte.
It is clear that if softwee is to be portable, inust be
written in a source language that does wgontain
any references to procesatgpendent infanation.
However, the programmer of microprosesbased
systems is commonly concerned not omlith what
is to happen but alswith the hardwarelependencies
of how it is to happen. Consequently, nayriad of
hardware details is scattered throughthue typical
application program. In another pap&r proposed
that effective code production for mignacessotbased
systems requées the separation ofcode into
interfacial and algorithmic parts (briefljnentioned
above), with specialized linking code foimg the
bridge between the two. The algorithmic swadte,
having had hardware dependencies removedds

quired prior to the implementation of a hidgwvel
language software development system. To make
any headway on the problems ofdeoproduction and
update it is necessary to examine the nature of the
software changes induced by hardware configuration
changes. Major portions of any weltructured code
are unaltered by such changes. To eliminate once and
for all the sheer messiness baving to make in
numerable tiny alterations in what had been func
tional code, we need to erect a barrier within the sof t
ware. Outside this barrier lies software not affected
by hardware configuration changes. This software is
essentially configuratiofree; we call it algorithmic
software. Within the barrier lies the interfacial soft
ware, including such items as input, output, and-tim
ing routines, special execution mode routines, and in
terrupt handlers. Our development strategy requires
that propery constructed programs should never

itself to implementabn in .a highedevel girectly penetrate the barrier between algorithmic
language. The algorithmic code can be developed By interfacial code. Instead, all communication be

“pure” programmers, leaving the development of inyeen the two must be via specially provided bridges
terfacial code to those with hardware comprehensiogy |inks.

The interfacial code must be rewritten for each hard This modularity can be extended further to solve

wa_lre_configuration. But thalgorithmic code is in e pdate problem for a system where distinct func
principle transportable. __tion code is placed in different ROMs. If one ROM is
The ideas we describe here have been applied dfered for whatever reason, one wishes to avoid hav
software development for the Oznaki Project. In-Ozpq 1o alter other ROMSs. This can be achieved if each
paid., microprocessor technology has. been used g\ has an associated link wall to provide deini
construct interactive "models” of mathematicalyigges into the code contained within it. Thus a-par
systems. it these computer models/the student-prjcyjar ROM can be replaced without affecting the
grams the activities of robots called "Naleis,” whichyher ROMS, provided that the link wall is maintained.
create patterns and designs, thread mazes, and chagfese bridge specifications can be viewed as a shift
targets about a TV screen. The tiny languages |j the normal division between hardwaradasoft
which the student programs thesgakis are intended yare. Hardware designers have traditionally seen
for implementation on exceedingly 1680St COR hejr role as being limited to the production of func
trollers. For the moment, "personal computersiional electronics. They then present software
based on 8080 and 6800 processors are used in Rfgiters with a precise hardware specification replete
liminary educational studies. The project has accesgiih bit-specific details. As a result, chges in hard
ware require an extensive software amendment effort
with it impractical to update existing units in the
field. And yet there will be innumerable possibilities
*With specifications similar to that of the Texas Instrumentsfor economies and improvements, resulting from the

"Speak and Spell6 see R. Wigginsand L. Brantingham, "Three variety of combinations of logicdunctions available

Chip System Synthesizes Human Speedhettronics, Vol. 51, No.

on single chips, together with those which will
COMPUTER

become available within théife of a product. With The detai$ of the interfacial software are irrelevant
the traditional demarcation between hardware amgl algorithmic programmers, who only need to know
softwareif, is difficult to take advantage of thesehe bridge specifications. Likewise interfacial code
possibilities However by creding a demarcation betweemrogrammers are only concerned with providing the
the algorithmic and interfacial code an effee fynctions inherent in the bridge specifications, in
simplification of the update problem can bet@bed (ormgof Jow-level hardwareoriented code. It is here

For example, the first version of a produetight Use 5 the hardwaréo-software boundary can be speci

software to perform serial /O whereas later goy ang respecified, as such decisions concern only
version might use an éanced chip to performthe ;o ¢ocial code programmers and hardware
aerial 1/0 in hardware. In this case, new iriteial

code would have to be produced, but existirqgs'gners'
algorithmic software would function on the new hard
ware without alteration, More importantly, any new
algorithms programmed fothe device would func
tion on both the nee e !.trait and those already producd@cros
Another way of looking at this can be gained from a . .
study of any piece of applications software. All such Macros are traditionally introduced as sans of
programshave as their basis a conceptual hierarcRyte€nding the instruction set of an assembler. To
of opemtions The programmer uses the contrdjUote the now classic example (wherein the expan
structures of the particular programming langua§®n is forthe M6800 processor) the definition
to organize these operations to provide the desired

performance. When considering assembly languageEFINE LSDUAMS Pl,PZ,:?;}I
programming, the lowest=level operations are the ADD N
machine instructions provatl by the particular pro STA AP3>

cessor (ignoring the possibility of microprogram

ming). The next highest level of operations consistplies that the statement

of those sequences of machine code required te con

trol or interact with the various devices connected to SUMS (100, NUMB, RESUT)
the processor, The nexdevel comprises those

routines providing the logical operation of thesgccurring in the assembly code will generate the
devices. Examples could be routines to "outputngachine code corresponding to
character to a video terminal" or "wait for the next

character from the keyboard." it is important to- ap LDA A,100
preciate this change to a logl operation level. It is ADD ANNUMB
irrelevant to the calling code whether the video- ter STA ARESULT

minal is memorymapped or connected by a serial .
data link, or whether the keyboard is buffered or uhis @dds (modulo 256) the contents of the bytes ad

buffered. It is these details that make up the cofgssed by the first two parameters, in this case 100
bodies of the operatits at this level. All more com @ndNUMB, and storeshe sum in he byte addressed
plex operations, constructed in terms of those prinRly the third parametérin this case RESULT. As all
tive logical operations, must themselves be logical titree parameters are assumed to be addresses, both
nature and therefore hardwaredlependent, Follow NUMB and RESULT would have to appear as labels
ing the conception and specification of thess®mewhere in the assembly.
primitive logical opeations, it, is clear that the code Clearly the macro definition has added an entirely
implementing them in terms of the available hardiew and hifper-level construct to the assembly
ware belongs to the interfacial category, .while th@nguage. Moreover, theell or invocation of sums
code writtenin terms of the primitive opations contains no processatependent information. By
themselvedelongs to the algorithmic category. substituting a different definition of SUMS, the same
Thus the first prol®m in system development ii;urce statement could be made to produce valid code
deciding the sorts of primitive logical operation @any otherprocessor. For example, for the IN8080

needed for the intended application domain. This ighg definition ofsumswould he
very important and difficult procedure and should be

approached after the program family outline has = NE LSXMS(PLPZ’E?<
been completely claiiéd. The next step is specifica LXI H,P2
tion of the memory space partitioning between the in ADA M

terfacial and algorithmic software, and the details of STA p3>

the bridges between them. These bridge specifica . .
tions require careful constructidnindeed, to sim OF more interestingly, for the DECsystefrd

plify update poblems we must employ elaborate jpne SUMS(P1,P2,P3x
strategies to give these bridges a physical existence MOVE 0,P1

ire memory (as f red location address tables, for exam ADD 0,P2

ple). As a resulof making these decisions the soft v g1l

ware problem can be neatly divided into two parts.

February 1979 55

56

Note that or the DEG10 we have arbitrarily chosenthis is readily available in the form of the host
to use register zero as an accumulator, and we haehine's macrassembler. In the past it has been
taken care to appropriately model théig nature of little recognized that adding maxifacilities to an
the operation implemented. assembler converts it into a universal assembler. It is
universal in that the macro facilities provide the abili
From this it is evident that if the basic operatioiiy to assemble programs for processors other than
required for a group of algithms are known, the one for which the base assembler was intended.
development of machinmdependent softwarel© clarify this, considr the output listing from vir
becomes possible by defining suitable macros fg@lly any assembler. It consists of some numbers,
these operations. There are four points we shoHRy2lly on the left of the page, and some symbols,

note about the above examples. We will discuss e4eHally on the right. In an ordinary assembler, the
in detail later. process of assembling embodies preset rules for

translating the symbdli code (source code) into the
1 In order to expand the reing source softwarer]ume;IC code f(oblj.e.Ct or mhachlne c%(?e). 'II'Ihe adr?'
for a given processor, it is necessary to hav 'gcg of macro facllities to the assembler allows the
macracrossassembler for that processor furl . r to define new rules for specifying the relation
. . hip between the symbols and the numbers. Given
ning on the host machine. Further, to allow fa¢ the machine code foany processor can be
portability of algorithmic software between difreresented by numbers, and given that these
ferent processors, it is mandatory that eagfinpers can be made to appear in the output listing
crossassembler support identical assbly 5 3 result of usespecified symbols appearing in the
time and macro facilities. source text, it is clear that a maemssembler is a
universal assembler.
1 The simple example above might leave the im
pression that the resultant source code will looVe demastrate the use of a maeassembler as a

like a list of Fortrartype subroutine calls. Thiuniversal assembler by reference to Matfy the
is certainly not the case, as it is pite to im resident assembler for the DEO mainframe. In the

names of certain IN8080 mnemonics. The psengo
IF (RELATION) THEN EXP appeaing in this listing assembles a -B& word
ErseE equal to the following parameter:
ENDIF™
and TITLE EXAMPLE
LOoP OPCODE DEFINITION
EXITIF (RELATION) DEFINE LDA(ADDR)<
ENDLGOP EXP 032
EXP ADDR&377
EX? ADDR/400
using the facilities of a normal maeassembler, DEFINE OUT(PORTK
despite its usually restricted format foar EXP 323
meter parsing. EXP PORT&377
1 The modularity of macros allows new DEFINE HALT<
EXP 166
state
ments, control structures, or data types to be
easily added to the implemented language. It CROSS ASSEMBLY
also permits refinement of existingnacros, and SALL
thus allowsimprovements in the efficiency of B%CORTz 5100
the generated code (to be made in paalith START: WA CHAR1
icati ouT OPORT
the development of the applications software). LISA CHAR?
L . . OouT OPORT
I By maintaining a suitable library of macros for HALT
host machine applications, algorithms can be CHART: EXP X
. . CIIAR2: EXP
executed and tested on the hosthiae using END

its existing debugging facilities.

Macro-asemblers asuniversal X-assembles This file consists btwo parts. The first containthe
macros wich define the target processor's opcodes,
which here comprise three instructions of the IN8080
instruction set. The second part appesssthe nor

| input would to an IN8080 assembler. Submitting
is file to Macro-10 produces the listing at top -op
osite (note that numbers are in octal).

The basic tool in a moroprocessor code develop
ment system is the crosssembler. To implement
systems as described in this paper requires the p
duction of crossassemblers containing sophisticate
macro facilities. Fortunately, the means of achievingp

COMPUTER

The "object code" produced by Macl® appears EXAMPLE MACRO %5012721 13:09 16-FEB-78 PAGE1

on the lefthand side of the listing and consists of twd@UTPUT MAC 16-FEB-78 13:08 _ o AMPLE

parts,the value of the PC or word address, followed

the vdue of the object words. Macrd 0 considers i OPCODE DEFINITION
these assembled words to be 36 bits each and prints

them in DEG10 halfword format. For our purpose DEFINE L%’?((F,ADDR) 332

the fact that Macrd O treats these words as 36 bits is EXP ADDR&377
irelevant. Instead we see on the listing the PC value . EXP ADDR1400
corresponthg to the address in the microprocessor's

memory, and next to this the specification of the DEFINE Olé)T(éPORT) 223
value of the byte at that address. This listing EXP PORT&3777
represents a valid crosssembly of the 1N8080 sym >

bolic code, given in the source file. Thus Mad®, or EDxEPFINE HALT< 166

any otker macreassembler, can be used as a univer
sal assembler.

However, the listings generated by Ma<k0 are in
a format designed to enhance intelligibility of

>

DEC-10 machine code rather thanb8 micro- 000100 LoC 100
processor code. In order to construct a more usefuol00100 000000 8888<3)g START (LDI;’/S)RT= SCHARI
crossas_semply utility, the following facilities have to 000101 000000 000113 :
be provided; 030102 000000 000000
. . . 000103 000000 000323 ouT OPORT
T hex representation of numbers in the input file; 900104 000000 000005
)) 000105 000000 000032 WA CHAR2
« hex representation in output of PC and 000106 000000 000114
" mbl 000107 000000 000000
assembled code”; 000110 000000 000323 ouT OPORT
. . . 000111 000000 000005
A error flagging of host machine operators and ggo112 000000 000166 HALT
other predefined symbols meaningdeto the 000113 000000 000130 CHAR: EXP X"
target processors if they appeared in the sourc800114 000000 000101 CHAR2: Ef\l(g

text without having been assigned new valuef§o erRrORS DETECTED

by the user); PROGRAM BREAK IS 000000
CPU TIME USED 00:00.224

1 suppression of undesirable pseunjos irrele 3K CORE USED

vant to the target processors;
ing the 6800, 8080, 6502, and SC/MP.CROZZ theactual target
processor information is contained in macro libraries for each
processor, so that extensioo other processors entails only
generation of appropriately formatted load writing such a macréibrary file, To demonstrate the effectiveness of
files; and the editing we present £ROZZ output listing for the previows
example:

9 ability to output error messages onto the listing
from the opcde-defining macros;

9 ability to load libraries of opcoddefining

macros, rather than having to insert them at the OZNAKI PROJECT CROSS ASSEMBLER OUTPUT

start of each source program. EXAMPLE

OUTPUT LST 16FEB-7815:15

Only the last of these facilities is readily available in TITLE EXAMPLE
Macrot(l). In orI?er tc; im[illem[;agé)the CROZZ macro OPCODE DEEINITION
assembler package for the , We wrote a pre SEARCH X8080
editor and a poseditor. The preeditor simply scans

the input file looking for numbers notlagged for s CROSS ASSEMBLY
radix and replaces them with the equivalent octal SALL

representation. The pestlitor is slightly more corn

plicated. As well as scanning the output file convert?040 5 8§8RT:540

ing octal numbers back into hex format, it tidies ugoso 3A4000 START: LDA CHAR1
the object code presentation. It also provides-rowo43 0305 ouT OPORT
tines for generating appropriately formattéoad 0045 3A4C00 LDA CHAR2
files from the data edited on the list file, as Welt %AS Dsgg S/L_\JET OPORT
routines for allowing multiple object bytes to appeas413 58 CHAR1: EXP "X

on the same line. By implementing the&elitors in 004C .41 CHAR2: EXP

DEC-10 assembly language and taking advantage,of crrors pETECTED END

inter-task communication facilitieswe attained a procraM BREAK IS 000000

tidy and efficient crossssembly package support AI3SLUTE BREAK IS 000161
CPU TIME USED 00:00.226
3K CORE USED

February 1979 57

58

The technique detailed abo¥dor using amacroe
assembler as a universala$sembley is not to our acro-assemblers as universal Xcompilers
knowledge described anywhere in the literature. V\)\él

discovered this method in April, 1976. It appears to
have been discovered (or perhaps rediscoveregg
elsewhere at about the same témihereby provig
that necessity is the mother of invention. In féug

he previous section demonstratadat a macre
semblecanbe used as the basisaMicroprocesor
code development systenAdditional advamages

plemented in the early '60s. It is surprising that thmacro facilities such as conditional assembly pseudo

§ps. Using these it is possible to define code
early workers Halperhand Ferguschdo not men structuring macros that in effect allow code to be
tion the ability of a macrassembler to function

(albeit crudely) as a "metassembler” in which the written in a specigburpose, probleroriented, higHevel

it . d d language. As an example wealemonstrate the
user can specity mnemonics and opcodes. construction of (ruime) conditionals. Consider an

For completeness we mention another techniqygplementation of the Algol statement:
for crossassembler construction described in a

number of recent pape’ In this approach the user IF JILL = JOE THEN

examines the structure of the coding of an existing BEGIN FLIP END
; ELSE

assembler, and alters the table of mnemonicsfabe BEGIN FLOP. END:

tors related to word size, and the address arithmetic.
Of course the better assemblers with enhanced macr

e -) . 1aCTH terms of the macraseQ, THEN, ELSEandENDIF
facilities ae not in the public domain, so only in Q ' a

special circumstances can this method yield aseros
. e 1FEQ JILL, JOE
assembler with advanced facilities and efficient-exe THEN
cution. ELSE FFLLISP
Jenkins and Tyef¢ have assessed a numbef
proprietary crossssemblers for various processors. ENDIF

These assemblers, written in Fortran, offer the user))

the most rudimentary facilities and yet compile codl is helpful to compare the desiredurce texwith the

10 to 40 times slower than CROZZ. This gross ineffintel 8080 assembly language code required to
ciency has generally been compounded by theafiseimplement its function:

table lookup to convert from ASCII input and out LDA JILL IFEQ JILL,JOE
put to an internal EBCD representation. LXI H.JOE

In comparison, by using the macro technique CMP M
described abovepne quickly obtains a weltested, JINZ LABEL(1)
sophisticated crosmacroassembler. It is well THEN
tested in that once the opcedefining macros are FLIP FLIP
correct, the crosassembler will have only those bugs
which exist in the host assembler. Where the host IMP LABEL12)
machine has been in service for some years, such bugsABEL(1):
are (generally) insignificant. It is "sophisticated” in FLOP ELSE FLOP
that such a crosassembler automatically possesses LABELI2): ENDIE

all the asemblytime macro features of the host

assembler. There only remains the question of im . o
plementation time. While the library of macros for &learly two labels, which we have signified IyBEL 11
particular processor can initially be written in a dayandLABEL (2), have to be created IBROZZ8080to mark
our experience suggests that to add a testkd the beginning and the end of the "flop" codifgr the
bugged,and documented crosassember to the moment we overlook the possibility of resbtonditionals,
CROZZ system requires approximately two manand write macralefinitions thatvould correcty assemble
weeks, nearly all of which is spent in the testing anghe |efthandside above:

documentation. The preand posteditors can, in the

first instance, be as simple as possible, be written in DEFINE ”r:\JE—rc\ng(rLfNK

any conveniat language, and represent a few days LDA U
work at most. The emphasis here is to get a develop LXI H,V
ment system available for the production of micro CMP M
processor code and then to refine it where it is INZ LABI .(N)>
necessary or desirable. The editors used in CROZZ DEFINE THEN< > “THE IS ANULL OP
have undergone seral such developments, with the
latest version written in DEQO assembly language D EFINE Eﬁg&éﬁk
for maximum speed. What is important is that these N=N+1
developments were made as and when time became JMP LABI LAN)
available, and in no way interfered with the availabili Y>
ty and use of theystem. D:FINE ENDIF<

LABEL(N)=.

COMPUTER

In these definitions the period "." stands for the-pror less thange for greater than, and the like, is very
sent value of the program counter. To méie above straightforward.
definitionsvalid, at the start of the program the index

N would have to be initialized to zero. Afteris, the DEFINE :Eﬁgﬁggﬁ%ﬁgﬁggiz
vector of created labe|sLABEL W, LABEL (2), LABEL $PUSH
13), - would be augmented each tinrEQ was called. STEMP=1
Actually, CROZZ does not have available the rota :\Il::IIIDFI\’l\l<URNIIE?_ESEQ> .
tion we are using of a vector of labels. Instead it is LDA ADDR1
necessary to define a macro which accepts the index LXI H,ADDR?2
as an immediate elstion parameter, and using CMP
character concatenation, generatesnajue symbol. %%MP:O LABEL(N)
The 'most important point is the maintenance of a IFIDN<REL>-(GE>,<
oneto-one correspondence between the index values LDA ADDR?2
and the generated symbols. E),f,'lp FLADDR1
The definitions given above willvork evenif the IM LABELIN)
ELSEis present for any number of consecutoandi TEMP-Q >
tional statements but fails for nested conditionals. IFIESZRELXIAEDBFH
For example, in the following construction: LXI H,ADDR2
CMP
IFEQ AB IM LABEL(N)
STEM P =0 >
THEN FLIP 1FN $TEMP, <PRINTX ERROR IN IF> >
ELSE IFEQ c,D

This definition includessimple eror reporting code
THEN FLOP involving STEM?.In CROZZ macrosietecing errors
ENDIF set particular bits ofthe DEG10 word, and the out
put listing is flagged for error type.
Note howthe assemblime stack serves to pass
messages from one macro to another. Such a use of an

me final label lnsertic]j bly éhf .OUtE“;'DétF qud hgxe assemblytime stack was made by Herm@&iddens, et
e same name as the label insertedgyinneren- al,"_ in adding blockstructures toPOI-11 assembly

Dt'P' I-:owe}/_e:c,_ nesttrl]ng of FI AT HlE'\:c biCOLE Llﬁrﬁgua'ge. ‘In the macro definitions presented above,
structs satisties the usual principles 0CKk the parameters are required to be-fl) addresses.

zfrr#p():lgjrilr?cg:br?ge:p[ﬁ)rr? kljsutar(\;v;girgrs%lsgfiltzlosdni\wléhlt%h While this is adequate for simple purposes, a signifi
implement. Suppose the macseust places thewp. ﬁ:ﬂto?'gmg\(;l gg?grlrj]zggrsmus'[permit expresssoin

rentvalue of the variableFNUMBER on an assembly . .

. In HELL, the macrebased implementation

:\lln;e j;?ctﬂg'tﬁg ?Osugfpt%sée sftggl??/\;htglmifrg?ﬁg;:g; larigua.ge used in the Oznaki Project, generalized ex

U =~ these two ﬁe macioseudeo ;ptr? " pressions are parsed via a carefully arranged set of
Sing w fOSEUTeOpS, the prey 10NS \ocyrsive definitions that also exploit the assembly

definition of IFEQ can be refined as follows: time stack. This expssion parser is effectively as com

ENDIF

DEFINE IFEQ(U,V)< plex as those in other highéevel languages, but
IFNUMBER=IFNUMBER+ 2 otherwise, MacrdlO supplies all other bookkeeping
$PUSH ;SAVE PREVIOUS N support so that the implementation labor is small.
N=ENUMBE R VB The detailed featuresf HELL are listed on the next
LDA page,togetherwith a demonstration program wit
E)&P ten in HELL. This demonstration program controls a

rudimentary robot. The source listing has been used
INZ LABEL(N)> to generate code to control the robot from the main
DEFINE THEN< > ; ;THEN IS A MACRO NGOP frame DEG10 and from microcomputers based on
DEFINE ELSE(Y)< both the 6800 and 8@3MPUs. _
LABEL(N)=. ~ There have been many papers published concern
N=N+ 1 ing the use of macrprocessing for language im
JMP LABEL(N) plementation support, most recently Furgerson and
Y> Gibbons? Rechenberd® and Tanenbaum." Most of

DEEINE ENDIE< these have describethe use of a genergburpose
LABEL(N)=. macroeprocessor with features and refinements not
SPOP ‘RESTORE N> available in macreassemblers. However, we have

found no referencem the literature to the use of a
Using these macro definitions, the vectoyBEL (N) Macroassembler as a universal Assembter,more
will have "holes" corresponding tie missingeLse, importantly, as a crossompiler supporting the
which is of no consequence. The generalization dévelopmentof transportable code. One notable
IFEQ by an IF macro, that takes as one of itsfeature possessed by powerful maprocessors is
arguments sutcharacter strings aQfor equal,LE ~ that macro definitions include specification of

February 1979

59

Im plementation language macros

The macro -based implementation language HEL

L has the follow -

ing macros for u se in application programs. Note that the original

versi ons of the
Algol60 . with patched
rewriting

Oznaki Project's software were written
-in machine routines. In order to
of this ere -existing code. H ELL acquired perforce an

in DEC-10
simplify the

Algol -like appearance. The list below does not include the macros
for expression parsing, with names commencing with "%%".

Statement
Statement

Code segmentation
IDATA NUMBER

CONSTANTS

PROGRAM TITLE

FINIS

Control Structures

IF (relation)

ELSZ

ENDIF

LOOP

EXITIF (relation)

ENDLOOP

PROCEDURE name

RETURN

Description

Locate following code into RAM
memory and provide the specified
number of words of memory for the pro -
gram execution stack.

Locate following code into ROM
memory.

Specify the title for the listing, make

the current address the program start
address and insert all necessary ini -
tialization code.

Specify the end of the program and ap -
pend those library routines required for
the particular program.

Generate code to evaluate the in -
dicated relation and conditionally jump

to the address of the appropriate ELSE

or ENDIF when the relation is false.

insert a jump tothe a ppropriate ENDIF
and supply the label used for the jump
in the previous IF.

Insert the label used in the preceding IF
or ELSE. -

Define a label which will be used in the
lump statement inserted into the code
by a following ENDLOOP.

Generate code to evaluate the in -
dicated relation and to conditionally
jump to the appropriate ENDLOOP
when the relation is true.

Insert a jump to the ap propriate
previous LOOP and defi ne the label
referenced in the previous EXITIF.

Define a macro with
which performs a subroutine jump to
the current address, (the address of the
line on which the procedure statement
occurs).

the specified name

Generate. code to

perform a subroutine
return.

GOTO label

SWITCH VAR, TOP,
BOT,<I abel list >

Data statements

INTEGER
<list of names >

STREAM name Jength

ASSIGN name,<expr >

SELECT name

BEGINSTREAN

INSYMBOL (varable)

OUTSYMBOL(expr)

SKIPSYMBOL(ex.pr)

BACKSYMBOL(expr)

'Generate code to perform a jump to the
specified address.

‘Generate code to check that the value

of the given variable between the
limit s "TOP' and 'B OT' and if so to
transfer to the approp riate label from
the list.

Allocate consecutive bytes of
to store single byte integer
referenced by the given names.

memory
variables

Allocate a block of memory of the
specified length, addressable through
the stream manipulation commands,
using the given name (effectively a
string of single -byte integers).

'Generate code to evaluate the spe-
cified expression and store the result
in the named integer variable.

Generate code to select the named

stream for subsequent manipulation.

'Generate code to set the current
streams pointer to the start of the
stream.

‘Generate code to obtain the byte
pointed to by the current streams
pointer. increment :he pointer and
store the obtained byte in the named
variable.

‘Generate code to eval uate the spe-
cified expression and store the single-
byte result in the ariOre3s pointed to by
the current streams pointer, and then
increment the pointer.

Generate code to e valuate the spe -
cified expression and to increment the
current streams pointer by this value.

‘Generate code to evaluate the spe-
-cified expression and to decrement
the current streams pointer by this

Application program demonstrating HEIslyntax

TITLE OZJUNIOR

:COMMENTS PR ECEDED BY ";6 ON SAME I

SEARCH X8Gt30
SEARCHWIZBOX

; Specifies processor
; Specifies MACHINE
; Configuration
Linkwall, Bridges,
and librar y
macros

:ASSEMBLYIME VARIABLES
NULL-0
LINEFEED = OA
CARETN O
DATA(10) ;STACK OF LENGTH 10

:PLACES CODE FOLLOWING IN RAM

VARIABLE <CMD. NUMF3, MODE, MTRCMD >
:DECLARATION OF SINGEBYTE VARIABLES

CONSTANTS :LOCATES SUBSEOUENT CODE IN ROM

PROCEDURENEWLINE

‘USES LIBRARY ROUTINE OUTCHAP.

OUTCHAR(<VALURINEFEEBI

OUTCHARI<VAUE.CARETN>)
<VALIUE.NULL%

E.NULL>
OUTCHARKVALUE,NULI.>)
RETURN

PROGRAM WIZ:
JINITIALIZATION ROUTINES INSERTED HERE BY HELL

NEWQVD: ASSIGN MODE, <VALUE,0>
ASSIGN NUMB,<VALUE.1>
INCMD: INCHA.R(CMO)
OUTCHACMD)
F WMO.EO0.<VP.LUEH">)
ASSIGN M3K1E.<1011,MODE,<VALUE2.>>
GOTO INCMD
END:F
IF f CYD.EQ.<VALUEA™>)
ASSIGN MODE.<1CR.MODE,<VALIIE.1>>
GOTO
ENDIF
F 1.<CMD.GE,<VALUE.*0>>.AN D,<CMD,LE.<VALUE,"9">>)
ASSIGN NUMB,<SUB.CMD,<VALLIE,"0">>
GOTO INCMD
ENOIF
IF (CMO,E0,<VALUF,"F">)
ASSIGN MTRCMD.< VALUE, 60>

ELSE
IF (CNID,E0.<VALLIE."B">)
ASSIGN MTRCMD.<VALLIE.6C>
ELSE
IF (CMD,EO<VALUE,"R">)
ASSIGN MIRCMD,<VALUE.68>
ELSE
IF (CMD.EO.,<VALUE,"L>)
ASSIGN MTRCMD,<VALUE, 64>
ELSE
IF (CMD,E0.<VAL.UE."3>)
ASSIGN MTP.CMD,<VALUE,70>
ELSE
GOTO NEWCMD
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
MT ROUT. ASSIGN MTPCIii1D,<A0D.MTROMD.MOD
NEWLINE
LOOP

EXITIFIF NUMB LE<VALUED>)
ASSIGN NUMB<SUE,NUMS, <:VALLJE,1>>
ASSIGNN MOCE.VALLIE,1:7
LOOP
CUTONAMMRCC!0)
FOVALEA
PAUSP,<VALLIE.40>)
MODE,<ADD,MODE <V 4LUE,1>>

EXITtF

ENDLOOP

LOOP
EXITIF (MODE.EG,<VALUE,Op
A PAUSE(<VALUE, 60>)
ASSIGN MODE,<SUB,MODE,<VALUE,1>>
ENDLCIOP
NEWLINE
ENDLOOR
GOTO NEWCM 0

FINIS

The above program accepts and decodes character commands
from a keyboard and outputs control commands to a small robot.
Keyboard commands are" F" for forward, "B" for back, "R" for right
turn, "L" for left turn, "6" for sit (motors off for specified duration).
and "0" to "9" specifying the number c re petitions. There are also
the "mode" modifiers' "A" for turning on the robot's lights and "H"
for honking a horn. A typical keyboard command steam would be
2HF 3ARBHAS, which would be translaed by the Ozjunior program
so that the robot takes 2 forward steps w hile honking, then turns
through 3 unit turns with lights on. etc. The Ozjunior program is a
cut down version of the program Oz. The complete Oz program in-
cludes facilities for the student user to define and call by name
macros of robot and display commands. Note that the above pro -
gram, written in a 1976 version of HELL. required actual numbers to
be preceded by the symbol "VALUE". This device, reminiscent of
the Lisp quote, was required because of a bug in the implementa-
tion of the Macro-10 pseudo-op

Another example of Oznaki software is provided by the *game
Wham, in which the user directs a "robot" called a "Naki" around a
TV screen. The Naki has the appearance *,>,V or <
depending on its heading, and deposits asterisks us it moves.
Wham combines a discrete geometry with calculator maths.

+ 4+ + + 4+t +

- i -

+ + V=2FR4FLIFR2F
+ A TSI T T AR +

s g +V‘\I:VJ

* R 0%an ok * X=AFR14+

+ v . . +

+ + Y=

2 +

+ . ’ + & ek Bk
+ 5 ' L + +
+ — e + T
* 3 + . -
* + + 4+ + + 4+
+++ ++++++++ 4+ ++ 10X

The above printout of a TV screen for Wham was taken after the
user had defined V, W. and X macros, and used the X macro to draw
the asterisk "squiral." (The parameter A is the number in the small
square accumulator on the right.) The HELL program for Wham
assembled in approximately 3K byes for 8080 and 6800 pro-
cessors, so Wham is indeed tiny To achieve portability, the action
of putting a character on a screen was used as a logical operation
whether achieved by placing a location in memory for memory-
mapped video or by outputting an appropriate seque nce of
characters to an external terminal. A copy of the screen was stored in
data streams in approximately 5K byte of memory leading to
essential redundancy in the memory-mapped video architecture.

parameter scanninglhis greatly simplifies the im This new definitiongenerates onlyp bytes of code to
plementationof higherlevel languages, as insteed perform the sunmoperation, whenever one of the first
by the possibility of defininga single macr@alled IF. two addresse$s the same as the result address. In
This macro, wherencountered, scans the source tewther cases generates 10 bytes of code. The intquatr
looking for the symboirHEN, which delimits the rela point about this example is the fact ththe im
tion, and then continueshe scan to find the ap provementan be conceived of amdcorporated intohe
propriate ELSE and ENDIF symbols. Thus he first Systemat any time. It isnot necessaryo producethe
parameter of ther macro isthe relation, the secondbest possible macro implementations at firsitdad, the
parameter contains thstatements to bexecuted quick production of a working library of macros
when the relation is true, anthe optional third performing the specified fations can be thénitial
parameter contains thetatements to be executeddbjective. This then allows the developmeantd
when the relation ifalse. Using these paraters the testing of theapplications software to begi®nce
IF macro cari immediately outpwtode appropriate to this hasbeen achieved work can proceed wifining
the complete conditionaktatement. A macro the macro implementations as a separatgect. As
assembler usuallydoes not have such parameteeachimprovement is madthe old macradefinition is
parsing facilities. Instead iis necessary to definesimply replaced by the new, after whichll
separate macros adescribed and provide ansubsequent compilationswill incorporate the
assenbly-time stackfor communication. Thismay €nhancement
not necessarily be disadvantage when it comes t0 apgther benefit of this language modularity as
compiletime efficiency. The Oznaki Project pro cjear correspondendeetween the source and object
gramsusing HELL assembledt eight lines per sec coge. In order to undeestd the codegenerated by a
ond, which compares welith Tanenbaum's oR®-- grce statement only those relevamacros need be
two lines persecondusing a genergiurpose macro cqgnsidered. In fact, the identification sburce code
processor. As he reportediost of the processing ith ghject code is contained precisewithin the
time is consumed analyzingxpressions. We found yefinition of the macros concernedive feel that
the assembly speed to betically related to the effi \yithin the frameworkof producing code for micro
ciency of the expressiomacros; we expended con processorcontrollers from higHevel languages, it is
siderableeffort in determiningtheir optimum con advantageou$or programmers to have a clear under
struction. standingof the object code produced by easburce
statement. This understanding is strengthebgd
. the tight binding ofsource and object coden the
Macro modularity listings generated by the macassembler.
. The disadvantage of strict modularity the ac
~ One of the recognizedadvantages of a maero tions of separate macros is overhead. Such overhead
implemented language is its resultant modularitys incurred by the inability to store results registers
The macros defined to implement a given sour¢Rtween statements. This not anunavoidable
language feature aria general completely indepen disadvantage of macsimplemented languagesut
dent of other macrosdefined to implement other in the initial development for the OznaKiroject no
Ianguage features. Addlng new statement to theattempt was made to overcome it. Apmm this,
language only requireshe definition of an ap the overall structure of the resultant program code is
propriate macro, assuming of course that this newhighly optimized. Where gdicable, macro state
feature is not meant ténteract with existing ments merely expand to subroutine callslitarary
features. A canllary of this isthat continuing refine software, automatically appended iodividual pro
ment of existing macrosan proceed in parallel with gramsif required (e.g., I/O routines, tableokup and
program developmentRefinement here refers to im computed GoTos). The coding of the teatsd bran
provementsin the efficiency of the generatedcode, as chesinvolved in the struture IF ... THEN .. .

measured by code sizg executionspeed. Consier ELSE . . . ENDIFiS in most cases equivalent kand-
the following improved IN8080 definitionof the sumg produced code(The system implementedails to
macro mentioned above: utilize compaction possibilities that arisehen the
same variable occurs in differeatib-expressions.)
DEFINE SUMSP1.P2.P3K 3> o At the source program struce level theprocedure-
' LDA Py calling and generating macros per_miIuItipIe entry
1,X1 points to routines, and allow optimalse of byte-
fﬂ%ﬁ/ S saving construction employed widely mandassem
IFDIF < P1 >-< PS > < bledcode.
IFIDN < P2 r
LXI H,P3
ADA The HELP system
MOV M,A
IFDIF <P2:><. P3 cl The ideas presented above have beentpgether
LXI H,P2 as acomprehensive design strategalled "HELP
é—?ﬁ P3 > 55 for microprocessor software developmett. HELP

involves using an advanced mig@r mainframe) as

COMPUTER

the host machine in a muitarget development
system. It involves the code partition scheme
described previasly, with the algorithmic code im
plemented in a macrbased highetevel language.
HELP involves a technique for program testinc
which we call highlevel emulation. The traditional
emulator creates an image of the targechine
memory space and regisserlt then takes each -in
struction of the targemachine code and executes it
interpretively. Thus in the conventional emulator
there is a ondo-one relationship between states of
the target machine and of the host representatio
With high-level emulatio, the initial development,
testing, and debugging of the algorithmic code ig-car
ied out on the host machine, using an appropriat
Library of macros. Whenever such a program is rur
there are two possible

1 low-level bug® errors inmacro definition; and

¢ high-level bug® errors in the higHevel pro
gram.

In both categories syntax errors (largely typos) ar
possible. It is difficult in a macrbased system to

check statement syntax in any global manner ar
provide the user with speaifierror messages. Hew

ever, when syntax errors occur, it is often apparel
from the listing,. and invariably the tight binding of
source and object code leads to rapid location. When
program written in terms of processioidependent
macros is tested andalidated, there are two dif
ferent products:

9 tested code for a particular processor; and

1 tested highlevel software. 1

Clearly the way to use higlevel emulation is to test
the software first on the most convenient pro|
cessod which might well be the host achine. If the
relevant macros for a given target processor hay
been previously tested, then the magrocessor can
immediately assemble valid code for the new-pro
cessor. Otherwise, if new macros have to be writte
for a new processor, as has been thedpminant ex
perience in the Oznaki Project, one can expect ¢
assembly to have to debug the new macro definition
The pattern of software development involving use ¢
high-level emulation is shown in Figures 1 and 2.

The picture of software developmejust given
describes the actual development of much of the Oz

naki Project software, which was used in school ties
References

in 1977%* Despite the fact that we carritte dotble
burden of implementing both the development
system and the actual application prams, there is

no doubt that there were significant savings by-pro

ceeding in this way. Henceforth for us, and for anyone,

who might use the Oznaki development system,

there is available an extensive library of debugged

macros for the DEEQO, and for the 808 and 6800
processors. Il

February 1979

Figure 1. The diagram Hlustrates the production of tested high-leve!
scitware for one of a “family” of similar programs. For such a family,
a common set of macros can bo defined.

‘

“BUGFREE

NOTE
NEW MACRO LIBRARY.HAS BUGS
OLD LIBRARY FEW BUGS

Figure 2. Hars, botih the input of macro module definitions and of the
tasted high-ieva! softwaro ars the starting peints for producing soft-
ware for a pariicular target microcomputor. That this works is a result
of cerelul cesign of individual macro modules. This ensures that any
Given high-level statement, when expandsad for any of the processors,
wiil preduce code performing similar functions.

1. H. A. Cohenand R. S. Francis/"HELP for

Microprocessor Software Development,“Digest of
Papers,COMPCONFall 77, Sept. 1977, pp. 1980.

Ibid.

M. H. Halpern, "Towards a General Processor for- Pro
grammingLanguages,CALM, Vol. 11, No. 1, Jan1968, pp.
1525.

83

64

Bibliography

4. D. E. Ferguson, "Evolution of théletaAssembly 7. Cohen, H. A., and Francis, R. ®znakiMacro Cross

Program"CA CM, Vol. 9, No. 3, Mar. 1966, pp. Assembler for 8080, 6800, SC/MP, 6502: Usdesal,

190-196. Revision 1.5, La Trobe UniversityMelbourne,
5. P. L. Evans, "Fast Cross Assembler Production," Australia, Nov. 1977.

Proc. DECUS Europe ConfL977, pp. 193195. 8. Cole, A.J Macroprocessors;ambridgeUniversity

6. G. K. Jenkins and P. J. Tyers, "Support Software for Press, 1976.
M_ICTOpI‘OC(-ZiZSOI’ Development,[IREECON Int Conf. 9. Conrad, M, King, D., and Pric®., "The Integration of
Digest.Melbourne, Aug. 1977, pp. 12224. Microcomputer Hardware and Software Devetemt

7. P.J. Tyers, Personal communication. Tools and Techniques," Digest of Papers,
8. G.S.HermarGiddens, R. B. Warren, R. C. Barr, and COMPCON Fall 77, Sept. 1977, pp. 2208.
M. S. Spach, "BIOMAC: Block Structured Program 10: Digital Equipment Corp.Macro-10 AssemblerPro-
ming Using PDP11 Assembler Language Software- grammer's Reference Manu&th ed., DigitalEquipment
Practice and Experiece, Vol. E, No. 4, OctDec. 19'15, Corp., Maynard, Mss., 1974.
pp. 359374. 11. Gannon, J. D., and Horningl. J., "The impact of
9. D. F. Furgerson and A. J. Gibbons, "A Higievel Language Design on thg Production of Reliable -Soft
Microprocessor Programming LanguageDigest of ware,"Proc. Int'l Conf Reliable Softwaréipr. 1975,pp.
Papers,COMPCON Fall 77, Sept. 1977, pp. 1888. 10.22,

10.P. Rechenberg, "MUM& A Machine Independent 12. Intermetrics, AHigh Level ProgrammingLanguage
Programming Langage Consisting of 360 Assembler for the Motorola Microcomputei(product descrifond

Macro Calls,"SIGPLAN Noticesyol. 12, No. 9, Sept. PL/M 6800 product supportytermetrics, le.. Cambridge,
1977, pp. 559, Mass., Dec. 1977.

11, A. S. Tanenbaum, "A GenefBurpose Macro Pro 13. Kildall, G. A., "High-Level LanguageSimplifies
cessor as a Poor Man's Compi@ompiler," IEEE Microcomputer Programming,Electronics, Vol. 47,
Trans. Software Engineering/ol. SE-2, No. 2, June No. 13, June 27, 1974, pp. 2069.

1976, pp. 123125. 14. Motorola, M6800 Microprocessor Application

12. Cohen and Francis, "HELP for Microprocessor Soft Manual, 1st ed., Motorola Semiconductdtroducts,
ware Development.” Inc., Phoenix, Ariz., 1975, sectiorl2.

13. H. A. Cohen, "Oznaki: A New Medium for Mathema 15. Strachey, C., "A General Purpdslacrogenerator."
ticians," in Learning and Applying Mathematicsp. Computer Journalyol. 8, Oct. 1965, pp. 22241.
Williams, ed., Australian Association of Mathematics g \yaite, W. M., Implementing Software foNon-
Teachers, Melbourne, 978, pp. 27483. Numeric Applications, PrenticeHall, Englewood

14.H. A. Cohen and D. G. Green, "Evaluation of the Cliffs, N. J., 1973.
Cognitive Goals of Oznaki: Enhancement of Spatiak; Wright, R. J., "Structured Programming in
Projective Abilities," in ACM Topics in Instructional ' Assemb'ler ..ijroé.’ DECUS Australia Conf1976, pp.
101#1019.

Computing(a special publication of ACM Sigcue), A.
M. Wildberger and R. G. Montanelleds., ACM, New
York, 1978,pp. 69-90.

15. Cohen, H. A.. "The Oznaki Robotics Language Os,"

Proc. 7th AustralianComputerConf., Vol. 1, 1976, pp.

128-143. Harvey A. Cohen is a senior lecturer in

the departments of computer science
and aplied mathematics at La Trobe
University, Melbourne, Australia. His
research interests include tiny kn
guages, microcomputer graphicssim
strategies in system developmeratnd
the nature of problem solvingkills.
Since 1975 he has directéide Oznak

1. Adamson, W. J., "Macro Processors and Language
Extension,"Proc. 7th Australian Compute€onf., Vol.
1,1976, pp. 411. Committee.

2. Barth, C. W., "STRCMACS An Extensive Set of Cohen received his PhD in theoretical physics at the
Macros to Aid in Structured Programming in 360/37@ustralian National University in 1965. He is the authoaof
Assembly Language,'SIGPLAN NoticesVol. 11, compendium of enigmatic proble@s'dragons*-in
No. 8, Aug. 1976, pp. 3B5. elementary mechanics.

3. Bennett, R. K., "BUILD: A Primitive Approach to the
Desgn of Computer Languages and Their Trans
lators," SIGPLAN NoticesYol. 11, No. 7, July 1976,
pp. 3440.

PR
4. Brown, P.J., Macro Processors and Portable Software, %f
Wiley, London, 1974. |

5. Cohen, H. A., "Microprocessor Software Develop
ment Using MacroprocessotsProc. 8th Australian
Computer Conf.1978.

6. Cohen, H.A,, and Fancis, R. S., "Programming Con *
structs for Microprocessors and BRBlice
Processors,"IREECON Int'l Conf. Digest, yre
Melbourne, Aug. 1977, pp. 11821.

2 ... Project, with the supportof the
Education Research and Development

Rhys S. Francis is a research student in
the department of computer science, La
. Trobe University, Melbourne, Aus

| tralia. His research interests include
macroprocessors, software portability,
| microcomputer architecture, language
design ad implementation. His daeral
thesis is in preparation.

Francis graduated with honors in
" science from Monash University,
..£4 Melbourne, Australia in 1976.

COMPUTER

