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Using a conventional macro-assembler as a multi-target  

cross-assembler and cross-compiler, the authors developed portable  

algorithmic code for microprocessor controllers. 
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Although most advanced minis and mainframes 

boast an assembler with advanced macro facilities, 

only rarely is significant use made of such facilities. 

Yet, as we explain in some detail here, a macro-

assembler is (almost) a universal X-assembler. More-

over, through the development of an assembly-time 

stack for message passing between macros (at macro-

expansion time), a macro-assembler can serve as a 

universal X-compiler for higher-level languages. 

We exploited these macro-assembler capabilities in 

constructing a multi-target microprocessor develop-

ment system resident on a DEC-10 mainframe. De-

veloped for the Oznaki Educational Project, this sys-

tem has as prime utilities CROZZ and HELL. The 

macro-cross-assembler CROZZ supports the E080, 

6800, SC/MP, and 6502 processors, and can be readily 

extended by the user to other target processors. 

HELL—a "highly extensible luverly language"---is a 

special-purpose macro-based language, with an Algol 

flavor. It yields code for the 8080 and 6800 pro-

cessors, as well as the DEC-10 mainframe. 

In order to meet in advance the challenges of minor 

hardware alterations ("update") in  a particular 

microcomputer, and the challenge of transporting 

software from one microcomputer to another, we 

have developed a code development strategy called 

HELP. HELP involves a code partition scheme, with 

well-defined links between what we term algorithmic 

and interfacial code. 

Background 

The continuing emergence of microprocessors and 

bit--slice processors presents a variety of challenges 
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 to those responsible for software development. One 

of the most basic is simply to produce the utilities and 

programming system in which to develop application 

programs for  a range—possib ly even a  great 

range—of different processors. While awaiting the 

development and/or availability of basic utilities, 

many programmers have been obliged to resort to ar-

chaic hand assembly and direct machine loading. A 

few companies and other organizations have at-

tempted to minimize this by restraining system 

designers to a particular microprocessor, invariably 

one supported by a custom development system. One 

can safely predict that when new processors emerge 

(with specifically desirable capabilities), efforts at 

standardization on a particular processor will fail. 

And where a custom development system is used, the 

availability of basic utilities for any new processor 

will  depend on the marketing strategy of  the 

manufacturer. 

To overcome these difficulties we advocate the use 
of an advanced mini or mainframe already familiar to 
the programming team as the host machine for a 
multi-target development system. This approach 
makes the host machine's existing editing, file 
management, back-up, and archival systems avail-
able. In order to follow this approach, cross-assem-
blers for many target processors must be available. 
Later we will show how the macro-assembler of the 
host machine can serve as a universal X-assembler. 

Microprocessors pose a further challenge —
development of cost-effective strategies for the im-
plementation of higher-level languages for a mul-
tiplicity of processors. It is well-known from tradi. 
lanai "software engineering" that programming 
a higher-level language reduces both the pro-
grammer's effort and the number of errors, yields  
more intelligible programs, and provides the oppor-
tunity for developing processor-independent code. 
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However, traditional implementations of high-level 
languages require massive effort in the first place. 
Moreover, the effort required to update such lan-
guages for processor and architecture variations 
becomes ridiculous for the purposes of control-type 
applications involving programs of only modest size. 
For such control-type applications, we advocate the 
development of a problem-oriented, macro-based 
language for each family of applications. Each 
language will consist of the same core of control 
structures and primitive data statements, to which 
are added only those constructs relevant to the par-
ticular problem area. The starting point for such 
development is the use of a macro-assembler as a 
universal X-compiler. As the macro-assembler 
already supplies all the necessary parsing and book-
keeping support, programmers unversed in compiler 
or systems programming can implement languages 
in minimal time. However, since none of the texts on 
macro-processors present even rudimentary ideas on 
how to use a macro-assembler, we present an in-
troductory discussion here. 

Programming in a high-level language immediately 
leads to the possibility of producing portable software. 
It is clear that if software is to be portable, it must be 
written in a source language that does not contain 
any references to processor-dependent information. 
However, the programmer of microprocessor-based 
systems is commonly concerned not only with what 
is to happen but also with the hardware dependencies 
of how it is to happen. Consequently, a myriad of 
hardware details is scattered throughout the typical 
application program. In another paper' we proposed 
that effective code production for microprocessor-based 
systems requires the separation of code into 
interfacial and algorithmic parts (briefly mentioned 
above), with specialized linking code forming the 
bridge between the two. The algorithmic software, 
having had hardware dependencies removed, lends 
itself to implementation in .a higher-level 
language. The algorithmic code can be developed by 
"pure" programmers, leaving the development of in-
terfacial code to those with hardware comprehension. 
The interfacial code must be rewritten for each hard-
ware configuration. But the algorithmic code is in 
principle transportable. 

The ideas we describe here have been applied to 
software development for the Oznaki Project. In Oz-
paid., microprocessor technology has. been used to 
construct interactive "models" of mathematical 
systems. In these computer models/the student pro-
grams the activities of robots called "Naleis," which 
create patterns and designs, thread mazes, and chase 
targets about a TV screen. The tiny languages in 
which the student programs these t-Takis are intended 
for implementation on exceedingly low-cost con-
trollers.* For the moment, "personal computers" 
based on 8080 and 6800 processors are used in pre-
liminary educational studies. The project has access 

 

*With specificat ions s imilar  to  that of the Texas Instruments 

"Speak and Spell" —see R. Wiggins and L. Brantingham, "Three-

Chip System Synthesizes Human Speech," Electronics, Vol. 51, No. 

18, Aug. 31, 1978, pp. 109-116. 

to a DECsystem-10 mainframe, used as the host 
machine for our development system. The basis for 
our implementation was the macro-cross-assembler 
package CROZZ Zoi various microprocessors, In-
herent in the project is a. special interest in micropro-
cessor code production, update, and transport prob-
lems. The "highly extensible luverly language" — 
HELL, based on macros for the DEC-10 Macro-10 
macro-assembler, has been developed and used as the 

prime implementation language. This language cBn 
be processed to produce code for the DEC-10 itself (to 
provide a variety of emulation we call high-level 
emulation) as well as for the 6800 and 8080 pro-
cessors. 

Interfacial and algorithmic code 

We begin by discussing the code separation re-
quired prior to the implementation of a high-level 
language software development system. To make 
any headway on the problems of code production and 
update it is necessary to examine the nature of the 
software changes induced by hardware configuration 
changes. Major portions of any well-structured code 
are unaltered by such changes. To eliminate once and 
for all the sheer messiness of having to make in-
numerable tiny alterations in what had been func-
tional code, we need to erect a barrier within the sof t-
ware. Outside this barrier lies software not affected 
by hardware configuration changes. This software is 
essentially configuration-free; we call it algorithmic 
software. Within the barrier lies the interfacial soft-
ware, including such items as input, output, and tim-
ing routines, special execution mode routines, and in-
terrupt handlers. Our development strategy requires 
that properly constructed programs should never 
directly penetrate the barrier between algorithmic 
and interfacial code. Instead, all communication be-
tween the two must be via specially provided bridges 
or links. 

This modularity can be extended further to solve 
the update problem for a system where distinct func-
tion code is placed in different ROMs. If one ROM is 
altered for whatever reason, one wishes to avoid hav-
ing to alter other ROMs. This can be achieved if each 
ROM has an associated link wall to provide definite 
bridges into the code contained within it. Thus a par-
ticular ROM can be replaced without affecting the 
other ROMs, provided that the link wall is maintained. 

These bridge specifications can be viewed as a shift 
in the normal division between hardware and soft-
ware. Hardware designers have traditionally seen 
their role as being limited to the production of func-
tional electronics. They then present software 
writers with a precise hardware specification replete 
with bit-specific details. As a result, changes in hard-
ware require an extensive software amendment effort 
with it impractical to update existing units in the 
field. And yet there will be innumerable possibilities 
for economies and improvements, resulting from the 
variety of combinations of logical functions available 
on single chips, together with those which will  
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become available within the life of a product. With 
the traditional demarcation between hardware and 
software if, is difficult to take advantage of these 
possibilities.  However, by creating a demarcation between 
the algorithmic and interfacial code an effective 
simplification of the update problem can be obtained 
For example, the first version of a product might use 

software to perform serial I/O whereas a later 
version might use an enhanced chip to perform the 
aerial I/O in hardware. In this case, new interfacial 
code would have to be produced, but existing 
algorithmic software would function on the new hard-
ware without alteration, More importantly, any new 
algorithms programmed for the device would func-
tion on both the nee e !.trait and those already produced. 

Another way of looking at this can be gained from a 
study of any piece of applications software. All such 
programs have as their basis a conceptual hierarchy 

of operations. The programmer uses the control 

structures of the particular programming language 
to organize these operations to provide the desired 
performance. When considering assembly language 
programming, the lowest=level operations are the 
machine instructions provided by the particular pro-
cessor (ignoring the possibility of microprogram-
ming). The next highest level of operations consists 
of those sequences of machine code required to con-
trol or interact with the various devices connected to 
the processor, The next  level comprises those 
routines providing the logical operation of these 
devices. Examples could be routines to "output a 
character to a video terminal" or "wait for the next 
character from the keyboard." it is important to ap-
preciate this change to a logical operation level. It is 
irrelevant to the calling code whether the video ter-
minal is memory-mapped or connected by a serial 
data link, or whether the keyboard is buffered or un-
buffered. It is these details that make up the code 
bodies of the operations at this level. All more com-
plex operations, constructed in terms of those primi-
tive logical operations, must themselves be logical in 
nature and therefore hardware-independent, Follow-
ing the conception and specif ication of these 
primitive logical operations, it, is clear that the code 
implementing them in terms of the available hard -
ware belongs to the interfacial category, .while the 
code written in terms of the primitive operations 
themselves belongs to the algorithmic category.  

Thus the first problem in system development is 
deciding the sorts of primitive logical operations 
needed for the intended application domain. This is a 
very important and difficult procedure and should be 
approached after the program family outline has 
been completely clarified. The next step is specifica-
tion of the memory space partitioning between the in-
terfacial and algorithmic software, and the details of 
the bridges between them. These bridge specifica-
tions require careful construction.

2
 Indeed, to sim-

plify update problems we must employ elaborate 
strategies to give these bridges a physical existence 

ire memory (as f red location address tables, for exam-
ple). As a result of making these decisions the soft-
ware problem can be neatly divided into two parts.  

The details of the interfacial software are irrelevant 

to algorithmic programmers, who only need to know 

the bridge specifications. Likewise interfacial code 

programmers are only concerned with providing the 

functions inherent in the bridge specifications, in 

terms of low-level hardware-oriented code. It is here 

that the hardware-to-software boundary can be speci-

fied and re-specified, as such decisions concern only 

in te rf acia l  code  p rogrammers  and  hardware 

designers. 

Macros 

Macros are traditionally introduced as a means of 

extending the instruction set of an assembler. To 

quote the now classic example (wherein the expan-

sion is for the M6800 processor) the definition 

DEFINE SUMS P1,P2,P3)
 
< 

LDA A,P
-
I 

ADD A,P2 

STA A,P3> 

implies that the statement 

SUMS (100, NUMB, RESULT) 

occurring in the assembly code will generate the 

machine code corresponding to 

LDA A,100 

ADD A,NUMB 

STA A,RESULT 

This adds (modulo 256) the contents of the bytes ad-

dressed by the first two parameters, in this case 100 

and NUMB, and stores the sum in the byte addressed 

by the third parameter—in this case RESULT. As all 

three parameters are assumed to be addresses, both 

NUMB and RESULT would have to appear as labels 

somewhere in the assembly. 

Clearly the macro definition has added an entirely 

new and higher-level construct to the assembly 

language. Moreover, the cell or invocation of sums 

contains no processor-dependent information. By 

substituting a different definition of SUMS, the same 

source statement could be made to produce valid code 

for any other processor. For example, for the IN8080 

the definition of SUMS would he 

DEFINE SUM8(P1,P2,P3)< 
LDA P1 
LXI H, P2 
ADA M 
STA P3> 

or more interestingly, for the DECsysterri-10 

DEFINE SUM8(P1,P2,P3) < 

MOVE 0,P1 
ADD 0,P2 
ANDI 0.fB11111111 
MOVEM 0,P3> 



 
 

 

H. A. Cohen and R.S. Francis, Macro-Assemblers and Macro-Based Languages in Micro-processor Software 

Development, in P. Isaacson (Editor), Microprocessors and Microcomputers, IEEE Computer Society, New York, 1979, 

2nd Revised Edition, pp 199-210  Reprinted from IEEE Computer, Vol 12, No 2, Feb 1979, pp 53-64 

 

      

56 COMPUTER 

Note that for the DEC-10 we have arbitrarily chosen 
to use register zero as an accumulator, and we have 
taken care to appropriately model the 8-bit nature of 
the operation implemented. 

From this it is evident that if the basic operations 
required for a group of algorithms are known, 
development of machine-independent software 
becomes possible by defining suitable macros for 
these operations. There are four points we should 
note about the above examples. We will discuss each 
in detail later. 

 In order to expand the resulting source software 
for a given processor, it is necessary to have a 
macro-cross-assembler for that processor run-
ning on the host machine. Further, to allow for 
portability of algorithmic software between dif-
ferent processors, it is mandatory that each 
cross-assembler support identical assernbly-
time and macro facilities. 

 The simple example above might leave the im-
pression that the resultant source code will look 
like a list of Fortran-type subroutine calls. This 
is certainly not the case, as it is possible to im-
plement structuring constructs such as 

IF (RELATION) THEN 

ELSE 

ENDIF 
and 

LOOP 

EXITIF (RELATION) 

ENDLOOP 

 this is readily available in the form of the host 
machine's macro-assembler. In the past it has been 
little recognized that adding macro facilities to an 
assembler converts it into a universal assembler. It is 
universal in that the macro facilities provide the abili-
ty to assemble programs for processors other than 
the one for which the base assembler was intended. 
To clarify this, consider the output listing from vir-
tually any assembler. It consists of some numbers, 
usually on the left of the page, and some symbols, 
usually on the right. In an ordinary assembler, the 
process of assembling embodies preset rules for 
translating the symbolic code (source code) into the 
numeric code (object or machine code). The addi-
tion of macro facilities to the assembler allows the 
user to define new rules for specifying the relation-
ship between the symbols and the numbers. Given 
that the machine code for any processor can be 
represented by numbers, and given that these 
numbers can be made to appear in the output listing 
as a result of user-specifled symbols appearing in the 
source text, it is clear that a macro-assembler is a 
universal assembler. 

We demonstrate the use of a macro-assembler as a 
universal assembler by reference to Macro-10, the 
resident assembler for the DEC-10 mainframe. In the 
following source file macros are defined to have the 
names of certain IN8080 mnemonics. The pseudo-op 
EXP appearing in this listing assembles a 36-bit word 
equal to the following parameter: 

TITLE EXAMPLE 

OPCODE DEFINITION 

DEFINE LDA(ADDR)< 
EXP 032 
EXP ADDR&377 
EX? ADDR/400 

using the facilities of a normal macro-assembler, 
despite its usually restricted format for para-
meter parsing. 

DEFINE 
OUT(PORTK 
EXP 323 
EXP PORT&377  

 The modularity of macros allows new 
state- 

ments, control structures, or data types to be 

easily added to the implemented language. It 

also permits refinement of existing -macros, and 

thus allows improvements in the efficiency of 

the generated code (to be made in parallel with 

the development of the applications software). 

 By maintaining a suitable library of macros for 

host machine applications, algorithms can be 

executed and tested on the host machine using 

its existing debugging facilities. 

DEFINE HALT< 
EXP 166 

CROSS ASSEMBLY 

SALL 
LOC 100 
OPOR T= 5  

START: WA CHAR1 
OUT OPORT 
LISA CHAR2 
OUT OPORT 
HALT 

CHART: EXP "X" 
CIIAR2: EXP 

END 

 
Macro-assemblers as universal X-assemblers 

The basic tool in a microprocessor code develop-
ment system is the cross-assembler. To implement 
systems as described in this paper requires the pro-
duction of cross-assemblers containing sophisticated 
macro facilities. Fortunately, the means of achieving 

This file consists of two parts. The first contains the 
macros which define the target processor's opcodes, 
which here comprise three instructions of the IN8080 
instruction set. The second part appears as the nor-
mal input would to an IN8080 assembler. Submitting 
this file to Macro-10 produces the listing at top op-
posite (note that numbers are in octal). 
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The "object code" produced by Macro-10 appears 
on the left-hand side of the listing and consists of two 
parts, the value of the PC or word address, followed 
the value of the object words. Macro-10 considers 
these assembled words to be 36 bits each and prints 
them in DEC-10 half-word format. For our purpose 
the fact that Macro-10 treats these words as 36 bits is 
irrelevant. Instead we see on the listing the PC value 
corresponding to the address in the microprocessor's 
memory, and next to this the specification of the 
value of the byte at that address. This l isting 
represents a valid cross-assembly of the 1N8080 sym-
bolic code, given in the source file. Thus Macro-10, or 
any other macro-assembler, can be used as a univer-
sal assembler. 

However, the listings generated by Macro-10 are in 
a format designed to enhance intelligibility of 
DEC-10 machine code rather than 8-bit micro-
processor code. In order to construct a more useful 
cross-assembly utility, the following facilities have to 
be provided; 

 hex representation of numbers in the input file; 

6  h ex  r ep res en t a t ion  in  ou tpu t  o f  P C and  
"assembled code";  

 error flagging of host machine operators and  
other predefined symbols meaningless to the 
target processors if they appeared in the source 
text without having been assigned new values 
by the user); 

 suppression of undesirable pseudo-ops irrele-

vant to the target processors; 

 ability to output error messages onto the listing 
from the opcode-defining macros; 

generation of appropriately formatted load 
files; and 

 ability to load libraries of opcode-defining 

macros, rather than having to insert them at the 

start of each source program. 

Only the last of these facilities is readily available in 
Macro-10. In order to implement the CROZZ macro-
assembler package for the DEC-10, we wrote a pre-
editor and a post-editor. The pre-editor simply scans 
the input file looking for numbers not 

-
flagged for 

radix and replaces them with the equivalent octal 
representation. The post-editor is- slightly more corn- 
plicated. As well as scanning the output file convert-
ing octal numbers back into hex format, it tidies up 
the object code presentation. It also provides rou-
tines for generating appropriately formatted load 
files from the data edited on the list file, as Welt as 
routines for allowing multiple object bytes to appear 
on the same line. By implementing these

.
 Editors  in 

DEC-10 assembly language and taking advantage of 
inter-task communication facilities, we attained a 
tidy and efficient cross-assembly package support- 

EXAMPLE MACRO %5012721 13:09 1
-
6-FEB-78 PAGE1 

OUTPUT MAC 16-FEB-78 13:08 
TITL E E XAMPLE  

         ; ;                        OPCODE DEFINITION 

DEFINE LDA(ADDR) < 
EXP 032 
EXP ADDR&377 
EXP ADDR1400 

                                                                            > 

DEFINE OUT1PORT) < 
EXP 323 
EXP PORT&3777 

    > 
DEFINE HALT< 

EXP 166 

 > 

 

. 

; ; CROSS ASSEMBLY 
; ; 
SALL 

000100    LOC 100 

  000005  OPORT= 5 
000100 000000 000032 START: LDA CHARI 
000101 000000 000113    
030102 000000 000000    
000103 000000 000323  OUT OPORT 
000104 000000 000005    
000105 000000 000032  WA CHAR2 
000106 000000 000114    
000107 000000 000000    
000110 000000 000323  OUT OPORT. 
000111 000000 000005    
000112 000000 000166  HALT  
000113 000000 000130 CHAR': EXP "X" 
000114 000000 000101 CHAR2: EXP  

    END  
NO ERRORS DETECTED 
PROGRAM BREAK IS 000000 
CPU TIME USED 00:00.224 
3K CORE USED 

ing the 6800, 8080, 6502, and SC/MP.  In CROZZ the actual target 

processor information is contained in macro libraries for each 

processor, so that extension to other processors entails only 

writing such a macro library file, To demonstrate the effectiveness of 

the editing we present a CROZZ output listing for the previous 

example: 

OZNAKI PROJECT CROSS ASSEMBLER OUTPUT 

EXAMPLE 

  OUTPUT LST 16-FEB-78 15:15 
TITLE EXAMPLE 

OPCODE DEFINITION 

SEARCH X8080 

; ; CROSS ASSEMBLY 

SALL 

0040   ORG 40  
 5  OPORT=5   
0040  3A4000 START: LDA CHAR1 
0043  0305  OUT OPORT 
0045  3A4C00  LDA CHAR2 
0043  D305  OUT OPORT 

004A  76  HALT  
00413  58 CHAR1: EXP "X" 
004C  . 41 CHAR2: EXP  
    END  
NO ERRORS DETECTED 

PROGRAM BREAK IS 000000 

Al3SLUTE BREAK IS 000161 

CPU TIME USED 00:00.226 

3K CORE USED 
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The technique detailed above—for using a macro-
assembler as a universal X-assembler—is not to our 
knowledge described anywhere in the literature. We 
discovered this method in April, 1976. It appears to 
have been discovered (or perhaps rediscovered) 
elsewhere at about the same time—thereby proving 

that necessity is the mother of invention. In fact the 
technique might well have been discovered at any 
time since the first macro-assemblers were im-
plemented in the early '60s. It is surprising that the 
early workers Halpern

3
 and Ferguson

4
 do not men-

tion the ability of a macro-assembler to function 
(albeit crudely) as a "meta-assembler" in which the 
user can specify mnemonics and opcodes. 

For completeness we mention another technique 
for cross-assembler construction described in a 
number of recent papers.

5
 In this approach the user 

examines the structure of the coding of an existing 

assembler, and alters the table of mnemonics, the fac-
tors related to word size, and the address arithmetic. 
Of course the better assemblers with enhanced macro 
facilities are not in the public domain, so only in 
special circumstances can this method yield a cross-
assembler with advanced facilities and efficient exe-
cution. 

Jenkins and Tyers
6,7

 have assessed a number of 
proprietary cross-assemblers for various processors. 
These assemblers, written in Fortran, offer the user 
the most rudimentary facilities and yet compile code 
10 to 40 times slower than CROZZ. This gross ineffi-

ciency has generally been compounded by the use of 
table look-up to convert from ASCII input and out-
put to an internal EBCD representation.  

In comparison, by using the macro technique 
described above, one quickly obtains a well-tested, 
sophisticated cross-macro-assembler. It is well-
tested in that once the opcode-defining macros are 
correct, the cross-assembler will have only those bugs 
which exist in the host assembler. Where the host 
machine has been in service for some years, such bugs 
are (generally) insignificant. It is "sophisticated" in 
that such a cross-assembler automatically possesses 
all the assembly-time macro features of the host 
assembler. There only remains the question of im-
plementation time. While the library of macros for a 
particular processor can initially be written in a day, 

our experience suggests that to add a tested, de-
bugged, and documented cross-assembler to the 
CROZZ system requires approximately two man-
weeks, nearly all of which is spent in the testing and 
documentation. The pre- and post-editors can, in the 
first instance, be as simple as possible, be written in 
any convenient language, and represent a few days 
work at most. The emphasis here is to get a develop-
ment system available for the production of micro-
processor code and then to refine it where it is 
necessary or desirable. The editors used in CROZZ 
have undergone several such developments, with the 
latest version written in DEC-10 assembly language 
for maximum speed. What is important is that these 
developments were made as and when time became 
available, and in no way interfered with the availabili-
ty and use of the system. 

 

Macro-assemblers as universal X-compilers 

The previous section demonstrated that a macro-
assembler can be used as the basis of a Microprocessor 
code development system. Additional advantages 
accrue from the fact that the resultant cross-
assemblers contain sophisticated assembly-time 

macro facilities such as conditional assembly pseudo--
ops. Using these it is possible to define code-
structuring macros that in effect allow code to be 
written in a special-purpose, problem-oriented, high-level 
language. As an example we demonstrate the 
construction of (run-time) conditionals. Consider an 
implementation of the Algol statement: 

IF JILL = JOE THEN 
BEGIN FLIP END 

ELSE 
BEGIN FLOP, END; 

in terms of the macros IFEQ, THEN, ELSE, and ENDIF 

1FEQ JILL, JOE 
THEN 

FLIP 
ELSE FLOP 

ENDIF 

It is helpful to compare the desired source text with the 

Intel 8080 assembly language code required to 

implement its function: 
LDA JILL IFEQ JILL,JOE 

LXI H,JOE   
CMP M   
JNZ LABEL(1)   

  THEN  

FLIP   FLIP 

JMP LABEL12)   

LABEL(1):    

FLOP  ELSE FLOP 

LABELI2):  ENDIF   

Clearly two labels, which we have signified by LABEL 11 

and LABEL (2), have to be created by CROZZ-8080 to mark 

the beginning and the end of the "flop" coding. For the 

moment we overlook the possibility of nested conditionals, 

and write macro definitions that would correctly assemble 

the left-hand side above: 

DEFINE IFEQ(UNK 
N=N+1 
LDA U 
LXI H,V 
CMP M 
JNZ LABI .(N)> 

DEFINE THEN< > ;THE IS A NULL OP  

D EFINE ELSECVK 
LABELCN1=. 
N=N+1 
JMP LABI LAN) 
Y> 

D:FINE ENDIF< 
LABEL(N)=. 
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In these definitions the period "." stands for the pre-
sent value of the program counter. To make the above 
definitions valid, at the start of the program the index 
N would have to be initialized to zero. After this, the 
vector of created labels, LABEL W, LABEL (2), LABEL 

13), - would be augmented each time IFEQ was called. 
Actually, CROZZ does not have available the nota-
tion we are using of a vector of labels. Instead it is 
necessary to define a macro which accepts the index 
as an immediate evaluation parameter, and using 
character concatenation, generates a unique symbol. 
The 'most important point is the maintenance of a 
one-to-one correspondence between the index values 
and the generated symbols. 

The definitions given above will work even if the 
ELSE is present for any number of consecutive condi-
tional statements but fails for nested conditionals. 
For example, in the following construction: 

IFEQ A,B 

THEN FLIP 

ELSE IFEQ C,D 

THEN FLOP 

ENDIF 

ENDIF 

the final label inserted by the outer ENDIF would have 
the same name as the label inserted by the inner EN-

DIP. However, nesting of IF „ THEN . ELSE . . . con-
structs satisfies the usual principles of block-
structuring, so there is a way around this which is 
simple in conception but requires careful coding to 
implement. Suppose the macro SPUSI-I places the MP. 

rent value of the variable IFNUMBER on an assembly-
time stack. And suppose further the macro $POP sets 

N equal to the top of the stack when it pops the stack. 
Using these two new macro-pseudo-ops, the prey ions 
definition of IFEQ can be refined as follows: 

DEFINE IFEQ(U,V)< 

IFNUMBER=IFNUMBER+ 2 
$PUSH ;SAVE PREVIOUS N 

VALUE 
N =IFNUMBE R 

LDA 
LXI 
CMP 
JNZ LABEL(N)> 

DEFINE THEN< > ; ;THEN IS A MACRO NO-OP 

DEFINE ELSE(Y)< 
LABEL(N)=. 

N=N+ 1 
JMP LABEL(N) 
Y> 

DEFINE ENDIF<  
LABEL(N)=. 
SPOP :RESTORE N> 

Using these macro definitions, the vector LABEL (N) 

will have "holes" corresponding to the missing ELSE, 

which is of no consequence. The generalization of 
IFEQ by an  IF macro, that  takes as  one of  i ts  
arguments such character strings as EQ for equal, LE 

for less than, GE for greater than, and the like, is very 
straightforward. 

DEFINE IF(ADDR1,REL,ADDR2)< 

IFNUMBER=IFNUMBER+2 
$PUSH 
STEMP=1 
N=IFNUMBER 
IFIDN<REL><EQ>,< 

LDA ADDR1 

LXI H,ADDR2 
CMP 
JNZ LABEL(N) 
$TEMP=0 

IFIDN<REL>-(GE>,< 
LDA ADDR2 
LXI FLADDR1 
CMP 
JM LABELIN) 
TEMP-Q > 

IFIDN<REL><LE>,< 
LDA ADDR1 
LXI H,ADDR2 
CMP 
JM LABEL(N) 
STEM P =0 > 

1FN $TEMP, <PRINTX ERROR IN IF> > 

This definition includes simple error reporting code 
involving STEM?. In CROZZ macros detecting errors 
set particular bits of the DEC-10 word, and the out-
put listing is flagged for error type. 

Note how the assembly-time stack serves to pass 
messages from one macro to another. Such a use of an 
assembly-time stack was made by Herman-Giddens, et 
al,' in adding block structures to POI'-11 assembly 
language. In the macro definitions presented above, 
the parameters are required to be (16-bit) addresses. 
While this is adequate for simple purposes, a signifi-
cant high-level language must permit expressions in 
lieu of simpler parameters. 

In HELL, the macro-based implementation 
larigua.ge used in the Oznaki Project, generalized ex-
pressions are parsed via a carefully arranged set of 
recursive definitions that also exploit the assembly-
time stack. This expression parser is effectively as com-
plex as those in other higher-level languages, but 
otherwise, Macro-10 supplies all other bookkeeping 
support so that the implementation labor is small. 

The detailed features of HELL are listed on the next 

page, together with a demonstration program writ-
ten in HELL. This demonstration program controls a 
rudimentary robot. The source listing has been used 
to generate code to control the robot from the main-
frame DEC-10 and from microcomputers based on 
both the 6800 and 8030 MPUs. 

There have been many papers published concern-
ing the use of macro-processing for language im-
plementation support, most recently Furgerson and 
Gibbons,

9
 Rechenberg,

1
° and Tanenbaum." Most of 

these have described the use of a general-purpose 
macro-processor with features and refinements not 
available in macro-assemblers. However, we have 
found no references in the literature to the use of a 
macro-assembler as a universal Assembler, or more 
importantly, as a cross-compiler supporting the 
development of transportable code. One notable 
feature possessed by powerful macro-processors is 
that macro definitions include specification of  
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Statement 

Code segmentation  

DATA NUMBER Locate following code into RAM 

memory and provide the specified 

number of words of memory for the pro-

gram execution stack. 

Description 

PROGRAM TITLE Specify the title for the listing, make 

the current address the program start 
address and insert all necessary ini-

tialization code. 

Control Structures 

IF (relation) 

INSYMBOL(variable) Generate code to obtain the byte 
pointed to by the current streams 
pointer. increment :he pointer and 
store the obtained byte in the named 
variable. 

Generate code to evaluate the in-
dicated relation and conditionally jump 

to the address of the appropriate ELSE 

or ENDIF when the relation is false. 

ELS2 insert a jump to the appropriate ENDIF OUTSYMBOL(expr) 

and supply the label used for the jump 

in the previous IF. 

SKIPSYMBOL(ex.pr) 

BACKSYMBOL(expr) 

LOOP Define a label which will be used in the 
lump statement inserted into the code 

by a following ENDLOOP. 

EXITIF (relation) Generate code to evaluate the in-
dicated relation and to conditionally 

jump to the appropriate ENDLOOP 

when the relation is true. 

Insert a jump to the appropriate 

previous LOOP and define the label 
referenced in the previous EXITIF. 

ENDLOOP 

PROCEDURE name Define a macro with the specified name 

which performs a subroutine jump to 

the current address,  (the address of the 

line on which the procedure statement 

occurs). 

Implementation language macros 

The macro-based implementation language HELL has the follow- 

ing macros for use in application programs. Note that the original 

versions of the Oznaki Project's software were written in DEC-10 

Algol60. with patched-in machine routines. In order to simplify the 

rewriting of this ere-existing code. HELL acquired perforce an 

Algol-like appearance. The list below does not include the macros 

for expression parsing, with names commencing with "%%". 

CONSTANTS Locate fol lowing code into ROM 
   memory. 

GOTO label 

SWITCH VAR,TOP, 
BOT,<label list > 

Data statements 

INTEGER 
<list of names > 

STREAM name, length 

ASSIGN name,<expr > 

SELECT name 

Generate code to perform a jump to the 
specified address. 

Generate code to check that the value 

of the given variable between the 
limits `TOP' and 'BOT' and if so to 
transfer to the appropriate label from 
the list. 

Allocate consecutive bytes of memory 
to store single byte integer variables 
referenced by the given names. 

Allocate a block of memory of the 
specified length, addressable through 
the stream manipulation commands, 

using the given name (effectively a 
string of single-byte integers). 

Generate code to evaluate the spe-
cified expression and store the result 
in the named integer variable. 

Generate code to select the named 
stream for subsequent manipulation. 

Specify the end of the program and ap-

pend those library routines required for 

the particular program. 

Generate code to set the current 
streams pointer to the start of the 
stream. 

FINIS 
BEGINSTREAM 

ENDlF Insert the label used in the preceding IF 
or ELSE. - 

Generate code to evaluate the spe-
cified expression and store the single-

byte result in the ariOre3s pointed to by 

the current streams pointer, and then 
increment the pointer. 

Generate code to evaluate the spe-

cified expression and to increment the 
current streams pointer by this value. 

Generate code to evaluate the spe-
-cified expression and to decrement 
the current streams pointer by this 

value. 

RETURN Generate. code to perform a subroutine 
return. 

Application program demonstrating HELL syntax 

TITLE OZJUNIOR 
:COMMENTS PRECEDED BY ";”  ON SAME LINE 
SEARCH X8Gt30                        ; Specifies processor 
SEARCH WIZBOX ; Specifies      MACHINE 

;Configuration 
Linkwall, Bridges, 

and library 
macros 
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:ASSEMBLY TIME VARIABLES LOOP 
NULL-0 EXITIF (MODE.EG,<VALUE,O>) 

LINEFEED = OA • PAUSE(<VALUE,60>) 
CARETN 0D ASSIGN MODE,<SUB,MODE,<VALUE,1>> 

ENDLCIOP 
DATA (10) ;STACK OF LENGTH 10 NEWLINE 

:PLACES CODE FOLLOWING IN RAM ENDLOOR 
GOTO NEWCM 0 

VARIABLE <CMD. NUMF3, MODE, MTRCMD > 
:DECLARATION OF SINGLE-BYTE VARIABLES FINIS 

CONSTANTS :LOCATES SUBSEOUENT CODE IN ROM 

PROCEDURENEWLINE 
:USES LIBRARY ROUTINE OUTCHAP. 
OUTCHAR(<VALUE LiNEFEED>i 
OUTCHARi<VALUE.CARETN>) 

<VALIUE.NULL%I 
E.NULL> 

OUTCHARKVALUE,NULI.>) 
RETURN 

PROGRAM WIZ: 
;INITIALIZATION ROUTINES INSERTED HERE BY HELL 

NEWCMD: ASSIGN MODE, <VALUE,0> 
ASSIGN NUMB,<VALUE.1> 

INCMD: INCHA.R(CM0) 
OUTCHACMD) 
IF WMO.E0.<VP.LUE.-H">) 

ASSIGN M3K1E.<1011,MODE,<VALUE2.>> 
GOTO INCMD 

END:F 
IF f_CY,D.E0.<VALUE.-A->) 

ASSIGN MODE.<1CR.MODE,<VALlIE.1>> 
GOTO 

ENDIF 
IF 1.<CMD.GE,<VALUE.'*0->>.AND,<CMD,LE.<VALUE,"9">>) 

ASSIGN NUMB,<SUB.CMD,<VALLIE,"0">> 
GOTO INCMD 

ENOIF 
IF (CMO,E0,<VALUF,"F">) 

ASSIGN MTRCMD.< VALUE,60> 

ELSE 
IF (CNID,E0.<VALLIE."B">) 

ASSIGN MTRCMD.<VALLIE.6C> 

ELSE 
IF (CMD,E0<VALUE,"R">) 

ASSIGN MIRCMD,<VALUE.68> 
ELSE 

IF (CMD.E0.,<VALUE,"L->) 
ASSIGN MTRCMD,<VALUE,64> 

ELSE 
IF (CMD,E0.<VA1.UE."3->) 

ASSIGN MTP.CMD,<VALUE,70> 

ELSE 
GOTO NEWCMD 

ENDIF 

ENDIF 
ENDIF 

ENDIF 
ENDIF 

MT ROUT. ASSIGN MTPCIii1D,<A0D.MTROMD.MOD✓ 
NEWLiNE 

LOOP 
EXITIF IF NUMB  LE<VALUE.0>) 

                      ASSIGN  NUMB <SUE,NUMS,<:VALLJE,1>> 
ASSIGNN MOCE.VALLIE,1:7, 
LOOP 

CUTONAMM-fRCC!0) 
EXITtF  FO<VALUE:CA--  

PAUSP,<VALtiE.40>) 
MODE,<ADD,MODE,<V.4LUE,1>> 

ENDLOOP 

The above program accepts and decodes character commands 
from a keyboard and outputs control commands to a small robot. 
Keyboard commands are" F" for forward, "B" for back, "R" for right 
turn, "L" for left turn, "6" for sit (motors off for specified duration). 

and "0" to "9" specifying the number c repetitions. There are also 
the "mode" modifiers. "A" for turning on the robot's lights and "H" 

for honking a horn. A typical keyboard command steam would be 
2HF 3ARBHAS, which would be translated by the Ozjunior program 
so that the robot takes 2 forward steps while honking, then turns 
through 3 unit turns with lights on. etc. The Ozjunior program is a 

cut down version of the program Oz. The complete Oz program in-

cludes facilities for the student user to define and call by name 
macros of robot and display commands. Note that the above pro -

gram, written in a 1976 version of HELL. required actual numbers to 
be preceded by the symbol "VALUE-". This device, reminiscent of 
the Lisp quote, was required because of a bug in the imp lementa-
tion of the Macro-10 pseudo-op 

Another example of Oznaki software is provided by the *game 
Wham, in which the user directs a "robot" called a "Naki" around a 
TV  s c r e en .  The  N ak i  ha s  t he  app ea r a nc e  ^ ,> ,V  o r  <  
d epend ing  on its heading, and deposits asterisks us it moves. 

Wham combines a discrete geometry with calculator maths. 

 

The above printout of a TV screen for Wham was taken after the 
user had defined V, W. and X macros, and used the X macro to draw 

the asterisk "squiral." (The parameter A is the number in the small 
square accumulator on the right.) The HELL program for Wham 
assembled in approximately 3K byes for 8080 and 68OO pro- 
cessors, so Wham is indeed t iny To achieve portability, the action 

of putting a character on a screen was used as a logical operation 
whether achieved by placing a location in memory for memory-
mapped video or  by outputt ing an appropriate sequence of  
characters to an external terminal. A copy of the screen was stored in 

data streams in approximately 5K byte of memory leading to 
essential redundancy in the memory-mapped video architecture. 
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parameter scanning. This greatly simplifies the im-
plementation of higher-level languages, as instanced 

by the possibility of defining a single macro-called IF. 

This macro, when encountered, scans the source text 
looking for the symbol THEN, which delimits the rela-
tion, and then continues the scan to find the ap-
propriate ELSE and ENDIF symbols. Thus the first 
parameter of the IF macro is the relation, the second 
parameter contains the statements to be executed 
when the relation is true, and the optional third 
parameter contains the statements to be executed 
when the relation is false. Using these parameters the 
IF macro cari immediately output code appropriate to 
the complete conditional statement. A macro-
assembler usually does not have such parameter 
parsing facilities. Instead it is necessary to define 
separate macros as described and provide an 
assembly-time stack for communication. This may 
not necessarily be a disadvantage when it comes to 
compile-time efficiency. The Oznaki Project pro-
grams using HELL assembled at eight lines per sec-
ond, which compares well with Tanenbaum's one-to--
two lines per second using a general-purpose macro-
processor. As he reported, most of the processing 
time is consumed analyzing expressions. We found 
the assembly speed to be critically related to the effi-
ciency of the expression macros; we expended con-
siderable effort in determining their optimum con-
struction. 

Macro modularity 

One of the recognized advantages of a macro-
implemented language is its resultant modularity. 
The macros defined to implement a given source 
language feature are in general completely indepen-
dent of other macros defined to implement other 
language features. Adding a new statement to the 
language only requires the definition of an ap-
propriate macro, assuming of course that this new 
feature is not meant to interact with existing 
features. A corollary of this is that continuing refine-
ment of existing macros can proceed in parallel with 
program development. Refinement here refers to im-
provements in the efficiency of the generated code, as 
measured by code size or execution speed. Consider 
the following improved I N8080 definition of the SUM8 

macro mentioned above: 

DEFINE SIJM$P1,P2,P3K 
!FILM < P1 >< P3>,‹ 

LDA P2 
1,X1 
ADA 
MOV > 

IFDIF < P1 >-< PS >,< 
IFIDN < P 2  r  

LXI H,P3 
ADA 
MOV M,A 

IFDIF < P2 :><", P3 
LDA Cl 
LXI H,P2 
ADA 
STA P3 > >>  

This new definition generates only 5 bytes of code to 
perform the sum operation, whenever one of the first 
two addresses is the same as the result address. In 
other cases it generates 10 bytes of code. The important 
point about this example is the fact that the im-
provement can be conceived of and incorporated into the 
system at any time. It is not necessary to produce the 
best possible macro implementations at first. Instead, the 
quick production of a working library of macros 
performing the specified functions can be the initial 
objective. This then allows the development and 
testing of the applications software to begin. Once 
this has been achieved work can proceed with refining 
the macro implementations as a separate project. As 
each improvement is made the old macro definition is 
simply replaced by the new, after which all 
subsequent compilations will incorporate the 
enhancement. 

Another benefit of this language modularity is a 
clear correspondence between the source and object 
code. In order to understand the code generated by a 
source statement only those relevant macros need be 
considered. In fact, the identification of source code 
with object code is contained precisely within the 
definition of the macros concerned. We feel that 
within the framework of producing code for micro-
processor controllers from high-level languages, it is 
advantageous for programmers to have a clear under-
standing of the object code produced by each source 
statement. This understanding is strengthened by 
the tight binding of source and object code on the 
listings generated by the macro-assembler. 

The disadvantage of strict modularity in the ac-
tions of separate macros is overhead. Such overhead 
is incurred by the inability to store results in registers 
between statements. This is not an unavoidable 
disadvantage of macro-implemented languages, but 
in the initial development for the Oznaki Project no 
attempt was made to overcome it. Apart from this, 
the overall structure of the resultant program code is 
highly optimized. Where applicable, macro state-
ments merely expand to subroutine calls to library 
software, automatically appended to individual pro-
grams if required (e.g., I/O routines, table lookup and 
computed GoTos). The coding of the tests and bran-
ches involved in  the st ruc ture IF  . . .  TH E N . .  .  

ELSE . . . ENDIF is in most cases equivalent to hand-
produced code. (The system implemented fails to 
utilize compaction possibilities that arise when the 
same variable occurs in different sub-expressions.) 
At the source program structure level the procedure-
calling and generating macros permit multiple entry 
points to routines, and allow optimal use of byte-
saving construction employed widely in hand-assem-
bled code. 

The HELP system 

The ideas presented above have been put together 
as a comprehensive design strategy, called "HELP 
for microprocessor software development...

12
 HELP 

involves using an advanced mini (or mainframe) as 
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the host machine in a multi-target development 
system. It  involves the code parti tion scheme 
described previously, with the algorithmic code im-
plemented in a macro-based higher-level language. 

HELP involves a technique for program testing 
which we call high-level emulation. The traditional 
emulator creates an image of the target-machine 
memory space and registers. It then takes each in-
struction of the target-machine code and executes it 
interpretively. Thus in the conventional emulator 
there is a one-to-one relationship between states of 
the target machine and of the host representation. 
With high-level emulation, the initial development, 
testing, and debugging of the algorithmic code is carr-
ied out on the host machine, using an appropriate 
Library of macros. Whenever such a program is run, 
there are two possible categories of bugs: • 

 low-level bugs—errors in macro definition; and 

 high-level bugs—errors in the high-level pro-
gram. 

In both categories syntax errors (largely typos) are 
possible. It is difficult in a macro-based system to 
check statement syntax in any global manner and 
provide the user with specific error messages. How-
ever, when syntax errors occur, it is often apparent 
from the listing,. and invariably the tight binding of 
source and object code leads to rapid location. When a 
program written in terms of processor-independent 
macros is tested and validated, there are two dif 
ferent products: 

 tested code for a particular processor; and  

 tested high-level software. 

Clearly the way to use high-level emulation is to test 
the software first on the most convenient pro -
cessor—which might well be the host machine. If the 
relevant macros for a given target processor have 
been previously tested, then the macro-processor can 
immediately assemble valid code for the new pro-
cessor. Otherwise, if new macros have to be written 
for a new processor, as has been the predominant ex-
perience in the Oznaki Project, one can expect en 
assembly to have to debug the new macro definitions. 
The pattern of software development involving use of 
high-level emulation is shown in Figures 1 and 2. 

The picture of software development just given 
describes the actual development of much of the Oz-
naki Project software, which was used in school ties 
in 1977.

133
' Despite the fact that we carried

-
the double 

burden of implementing both the development 
system and the actual application programs, there is 
no doubt that there were significant savings by pro-
ceeding in this way. Henceforth for us, and for anyone 
who might use the Oznaki development system, 
there is available an extensive library of debugged 
macros for the DEC-10, and for the 8080 and 6800 
processors. III 

1 

I TESTED NIGH LLVEL SOFTWARE I 

rtgun 1. The diagram illustrates the production of tested high-level 
software for one of a "family" of similar programs. For such a family, a 
common sat of macros can be defined.  

NOTE 

NEW MACRO LIBRARY HAS BUGS 

OLD LIBRARY FEW BUGS 

FigUrtl. 2. Hart), both the input of macro module definitions and of the  
taste l high-ieval software are the starting points for producing sell- 
for e pailicular large microcomputer. That this works is a result of 

ca.roM CeLign of individual macro modules. This ensures that any givtra 
high-lewd statement, when expanded for any of the processes., 

proda,..ce code performing similar functions. 
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