14 =1
ESCHER: A Block-Oriented Graphics Language for Microcomputers

Dr Harvey A. Cohen
Computer Science Department
La Trobe University

Bundoora, Victoria 3083

ABSTRACT

ESCHER is an interpretive ‘graphics language tailored to the pictorial-
capabilities of the relatively coarse grained memory mapped video output
‘available in today's personal computers, and so—-called “video computers”,
The - language 1is block oriented, rather than 1line oriented. The user .
creates and merges rectangular subpictures called motifs, to form whole

screen views, which in their turn may be stored and combined together.
- Motif manipulation andhdefinition is via the mediation of a screen creature
called a NAKI. A unique’ screen arithmetic enables the immediate undoing of
any motif dumping or whole screen addition deSpite super imposition. The
language has a simple command structure, with immediate execution of
completed commands. The programmer may define run-time macros that include
conditional branching dependent on the state of a number register or on
NAKI location. Using ESCHER, it is possible to readily program a range of
video games involving repeated patterns and shapes, and numeric scoring.
This use of ESCHER.is illustrated 1in the compact implementation of a
 preschool video calculator called the PLUSMINUS.

'INTRODUCING ESCHER

ESCHER was conceived to creatively exploit the graphic capabilities for
relatively coarse TV graphics with the smallest video dot, a pixel,
visually resolveable. In ESCHER the TV screen is interpreted as composed

of small rectangular blocks of pixels, called cells. The contents of a
cell is temmed a graphic character. Underlying ESCHER is the notion of a

screen object called a NAKI. This screen robot has rather more elaborate

14 - 2

behavior than the “TV Turtle" used in the line drawing language LOGO
(Papert, 1973; Goldberg, 1976). The NAKI when made visible appears as a
flashing asterisk that alternates with the graphic character that occupies
the same cell. ‘The NAKI can erase the cell it occupies, or replace the
contents of that Cell by another graphic character. The NAKI also controls
@ rectangular array of cells with the NAKI located at the upper left hand
corner. As the NAKI moves from cell to cell about the screen, its
rectangle moves with it.

ESCHER commands, and user defined macros, are of one character, which mav
be preceeded by a number (of repetitions or auxiliary parameter), are
sometimes require a following digit or upper case character serving as arm
index for their completion.

The NAKI can move about the TV screen from cell to cell'in obedience to the
basic movement commands, n for north, e for east, s for south, and w for
west. (“"north" on the TV screen is upwards as in maps) . The number of
cells moved on (but not off) the screen in these four directions is |
specified by the nunber preceeding the movement command. There are special ;
cells on the screen that are "homes™ for the NAKI. On the command N]
where N is some integer, the current location of the NAKI becomes “ome _.*
number N. Then on the command Nj, the NAKI will jump to home number N. '

MOTIF DEFINITION AND SCREEN PICTURES

The contents of the NAKI rectangle are stored as a named motif with
character name <char> on the command z<char>. Thus, for instancs. = }
might define a complete set of motifs to provide format alpha-rumer
characters, with each appropriately named. The NAKI will dump motif <cm |
into the NAKI rectangle on the command @<char>, adding each pixel o=
Stored motif <char> to each pixel of the rectangle according to the
addition rules:

BLACK + BLACK = BLACK
BLACK + WHITE = WHITE
WHITE + WHITE = BLACK

14 - 3

Hence performing a command @<char> twice in succession leaves the NAKI
rectangle as it was. This is one of several ways in which ESCHER is kind
and forgiving to the user; the effect of any injudicious screen addition
1s erased by repeating the incorrect operation.

The whole screen may be saved as picture number <num> on the command
t<num>. A <nuw greater than 9 has to be enclosed with brackets. The
contents of screen picture <num> are added to the screen on the command
 v<num>, the addition being performed pixel by pixel in accord.with the
picture arithmetic formula presented above.

There are two whole screen reflection commands, m<num> for reflection in a
horizontal mirror, and I<nun>for reflection in a vertical line. These
commands leave the drawing screen unchanged, but store the reflected whole
‘screen as picture number <numd.

In some circumstances one wishes to simply copy a motif exactly into a NAKI
- rectangle. The command to so dump motif <char> into the NAKI rectangle is
#<num>, where <num> equals the ASCII value of <char> minus the ASCII value
of "0". (So #<digit> dumps the motif <digit> exactiy).

The command to clear the entire drawing screen is Jjust ¢ (for clear),
whereas the NAKI rectangle is blanked on the command b. Another command to
be used in an example below is the command r, which video reverses (black
to white and vicevera) all pixels within the NAKI rectangle.

Example 1: Wall Paper Design

The simpler graphic features of ESCHER are well demonstrated ln

.-F\I WY
"’.;:l 'I";t'w:l': L -'r] !

the following account of how a wall paper design is produc““;
Suppose that the motif 4 (for duck) displayed to the 1left has
been defined. The screen may be cleared on the command c (for
clear) . Moving the NAKI to the top left of the screen, the

motif can be dumped to form a row of eight on the command

8 (€d8e)

<
i ¥
L

PUuureuios syy Aqg ‘C ur burio
49UIny sy3 buryew MON *Adjounis

9Tduits e SPTTA Uesids sy o 2aN301d

1S PuUe Tejuoziioy auyj UT uotjosTIa.

[ed13a8A Yy M ubtsap SATT Yaom-32.3

Peiols sty Burppy ‘P @an3o1d se

O 38Ul 30 Adoo p

PR403s oq TTIM ‘Kem 911scddo suya buroez SHONP Y3 UM usa;

T

e

L

*Aem sures 43 buroey 1TE S¥ONP JO smoj Dsiabbeas
HY3IM poianod aq Aeu Us810s aToum auj

‘ A9Uuew STU3 urt
pSonpoiad aqg Aeu ISATI =

s - 1 T T
4f U0 DuIn UTIUuo,

14 =15

THE COMMAND SCREEN

So far we have only described the drawing screen, the TV picture on which a
NAKI roams. However, when ESCHER is used as an author language, there is a
second video output to the command screen, which shows the input command

_buffer, used defined macros, and two number registers called A and B.

A=007 B=010

U=(03# (A)Aj# (B) ! UPDATE)
V=(9S() (+U)! "Plus")

W=(0S() (b-U)! “Minus")
D=(%A-11+3%G! "All dogs")
E=(3A-10+3G! “All trains")
F=(%A-12+%G! "All birds")
G=(L3A(# (B) 7e)Aj! REMAKE ROW)

2V

The ESCHER command screen, as shown in the printout above, is very similar
- To that used in the educational macro language WIZ77 (Cohen, 1978,9). The
—eft hand side of the command screen is reserved for an vyet unimplemented
system for drawing motifs pixel by pixel, using pseudo-pixels as largé as
the cells on the drawing screen. On the bottom right is the input buffer,
& macro of name <char>, where <char> is upper case and not a reserved

character, may be defined as textually equivalent to the completed command

stream "listl" using the command

Bl<char> (1istl)

‘lbllawing its definition, the macro named <char> appears in the macro list
=n the form <char>=(listl) On the above printout, the defined macros are

14 - 6
those used in the PLUSMINUS implementation described below.

The command <number>+ adds <number> to register A, while <number>-
subtracts one from A <number> times, with the proviso that A does not
decrease when its zero. The contents of these registers are referenced by

name, so that A- sets register A to zero. The command $ swaps the contents

of A and B registers.
The conditional commands have the form
<numdY (listl) (1ist2)

where the brackets about the command lists are essential. If the (Boolean)
condition Y 1is true, then the command list listl is executed, otherwise

list2. An example of such a conditional is <num>T, the condition that A is
equal to <num>. The conditional <num>S tests whether the NAKI is on home
cell number <num>.

Example 2: The PLUSMINUS

Using the conditionals and macro facilities it is possible to use ESCHER to
readily implement a range of TV games of educational value. This
capablility will be demonstrated via ESCHER implementation of the

PLUSMINUS, a program used to introduce preschoolers to elementary number
concepts. (See Cohen, 1979).

In PLUSMINUS, the child user commands the screen using a set of large keys
appropriately labeled by its teacher. For clarity, we shall talk as though
these labels were multi-character as, for instance, “All trains", whereas
the actual Ascii value of the key in this instance is E. But the macro E

1s defined to include the comment ! “All trains", so that the relation of

user Kkeys to command characters is clear. However the Keys marked with

digits on the child's keyboard do in fact output the corresponding Ascii
digit to the microcomputer controller.

In PLUSMINUS the (drawing) TV screen displays a set of objects, together

14 - 7

with a large format display of the number count. On pressing the "Plus"
key, the count increases Oy one, up to a maximum of nine objecks. (n
pressing the "Minus" key, one object disappears, provided there is one
object at least on the screen. on pressing the "All trains" key, all the
objects displayed become trains, the "All dogs" command makes for all dogs,
the "All birds" key makes for all birds. The digit keys work as on a
reverse Polish calculator, so that, for instance, the command sequence 3

"Plus" adds three to the display of object and corresponding count.

The first stage in lmplementing PLUSMINUS is to produce the screen animals..
We suppose the BIRD motif is #(12), the train motif is #(10), and the dog
motif is #(11). Large format numbers 0 to 9 are naturally labelled 0 to
9. There are two homes to be formed, home zero, where the NAKI will
update the number display, and home 1, where the NAKT will dump the first
sCreen "animal" at the left hand edge of the screen. 1In addition, in order

to demonstrate macros constructed using the j command, we require homes 2
o 9 to be also formed at the same row, at 7 cell spacing.

In the implementation of PLUSMINUS Specified by the above macros shown on
the command screen, the NAKI sits where it has dumnped the Nth screen

animal, at home number N. n the "Plus" command, it checks whether it is

_ocated at home 9, and if so, does nothing, otherwise A is increased by

14 - 6
those used in the PLUSMINUS implementation described below.

The command <number>+ adds <number> to register A, while <number>-
subtracts one from A <number> times, with the proviso that A does not

decrease when its zero. The contents of these registers are referenced by
name, so that A- sets register A to zero. The command % swaps the contents

of A and B registers.
The conditional commands have the form
<numdY (listl) (1list?2)

where the brackets about the command lists are essential. If the (Boolean)
condition Y 1is true, then the command list list] is executed, otherwise

list2. An example of such a conditional is <num>T, the condition that A is
equal to <num>. The conditional <num>S tests whether the NAKI is on home
cell number <num)>.

Example 2: The PLUSMINUS

Using the conditionals and macro facilities it is possible to use ESCHER to

readily implement a range of TV games of educational value. This
capablility will be demonstrated via FESCHER implementation of the

PLUSMINUS, a program used to introduce preschoolers to elementary number
concepts. (See Cohen, 1979).

In PLUSMINUS, the child user commands the screen using a set of large keys
appropriately labeled by its teacher. For clarity, we shall talk as though
these labels were multi-character as, for instance, “All trains", whereas

the actual Ascii value of the key in this instance is E. But the macro E

1s defined to include the comment ! "All trains", so that the relation of

user keys to command characters is clear. However the keys marked with
digits on the child's keyboard do in fact output the corresponding Ascii
digit to the microcomputer controller.

In PLUSMINUS the (drawing) TV screen displays a set of objects, together

| e - # e T F N R — e - N
L U - —H“ -—l-'l-l"-d-ﬁ-‘ T | T - . PR S I R - L S B T e U o R T e = [T T Ly B
E 3

number in the B register becomes

using the G macro.

IMPLEMENTATION AND USE

The current implementation of ESCHER is for 8080 based personal computers
using Polymorphic Systems VDM (memory mapped video rams) for video output.
when ESCHFR is used as an author language two VDM boards are required, 1In
order to display both the command screen and the drawing screen. To match
the hardware used for video rams, cells are three pixels deep by two wide,
and the screen comprises 16 rows of 64 cells. NAKI rectangles are 4 cells
deep by 8 wide, so that each motif requires 32 bytes to store, whereas
screen pictures (and an invisible command screen) require 1K bytes. The
minimum useful ram requirément is 1oK. The existing implementation 1Is
being used both as an author language for TV games for mentally retardec
pupils, extending the work described in Cohen (1980), and as a programming

language by a group of junior high school students.

REFERENCES

COHEN, H.A. (1978): “OZNAKI: A New Medium for Mathematicians", in
D. Williams (Editor), "Learning and Applying Mathematics", Publ ished Dy
rhe Australian Association of Mathematics Teachers, pp 274-283.

COHEN, H.A. (1979): “OZNAKI and BEYOND", in D. Harris (Editor),
Proceedings of NECC 1979 National Education Computing Conference, The
University of Iowa, Iowa, pp 170-178.

COHEN, H.A. (1980): “Expanding.the Child's Concept of Number, Space anc

Operation”, in M. Poole (Editor), "From Creativity to Curriculum", Allen
and Unwin, Sydney, pp 147-162Z.

GOLDBERG, A. ., and RAY, A, .(1976): "Personal Dynamic Media", Xerox Palc
Alto Research Center Report, 1976.

PARERT .S o (1973) :.. MUses of Technology to Enhance Education", LOGO Memc
No. 8, M.I.T. Artificial Intelligence Laboratory.

- el e i

