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The focus of this work has been to develop machine vision 
means for the estimation of the flow rates of slurries and 
aggregates such as occur in power houses, in mineral 
processing, and in the packaging and transfer of such 
materials. Our approach is to determine optic flow in 
orientation and magnitude from sequences of video images, 
tither at frame-time delay or multiples thereof. In the 
materials whose flow was studied there is a definite texture 
Nit little in the way of defined lines. The actual velocity in 
cases of interest is primarily (if not exclusively) in one 
direction. In the preliminary study reported here we report on 
optical flow measurements performed on synthesised 
sequences of natural images. For the flow cases studied, it is 
shown that the "natural" estimate of optical flow velocity 
ores a better first estimate that the spatially smoothed 
_gyrator of Horn and Schunk. .A practical method of 
capturing image sequences using a frame grabber of single 
one capacity is explained. 

Keywords: Optical flow, spatiotemporal filters, image 
sequences, image sequence capture, motion, slurries, tuned 
filters, three dimensional filters, image processing hardware. 

Computation of Motion 

There are two distinct approaches to the calculation of 
motion from sequences of images. [5] The first involves 
feature matching where the features involved may be lines or 
corners. In this method corresponding features on a 
sequence of image need to be matched in much the same way 
as in the matching of stereo pairs. The second method, 
pioneered primarily by Horn et al [6],[7] involves the 
computation of le optical flow as field of flow of grey 
scale within the 'age sequence. The matching 
approach has obvious capability in the dynamic study of 
well-defined objects, such as machines and packages; 
whereas the global approaches lave special significance for 
the study of the flow of textures aid slurries, and amorphous 
objects such as clouds. Hence in 

the work described here on the visual sensing of the flow of 
aggregates and slurries the approach via optic flow has been 
taken. 

Optical flow is a local property related to the both the local 
gradient of grey scale in each image, and to the difference in 
grey scale at each pixel location in successive images.In the 
approach of Horn et al [6] the optical flow is essentially 
obtained by balancing the data values with smoothness 
constraint. Recently Heeger [1] demonstrated a simpler 
approach to optic flow estimation via the application of three 
dimensional convolution masks to image sequences. It is of 
interest to note that Heeger [1] proposed spatiotemporal 
filters on the basis of psychological models of human 
perception of motion. [cf Watson and Ahumada [2]. Adelson 
and Bergen [3] 

Optic Flow 

For a continuous image E(x,y) the optic flow equation is:  
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where (u,v) is the flow velocity at (x,y). For rigid bodies 
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Some recent papers have discussed non-rigid motion, 
[1 l][12]. Our interest in slurries and aggregates ultimately 
requires the study of the non-zero (total) flow case. However, 
in our preliminary studies, we have used natural images, but 
then synthesised an image sequence. Hence in these 
preliminary studies we accept the rigid body condition, and 
impose the further restriction that the velocity flow 
component along the x-axis, 

u (x,y) = 0 



 

This leads to the simple formula: 
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In digital image processing optic flow thus depends on the 

numerical calculation of two partial derivatives. In numerical 

analysis, such a calculation is achieved by using either the 

forward difference operator: 

Df(i) = f(i+1) - f(i) 

the backwards difference operator 

Dbackwardsf(i) = f(i) - f(i-1) 

or a central difference operator 

 

Dcentral f(i) =  
 

 
 ( f(i+1) - f((i-1)) 

It is notable that these, and other,  difference operators take the 
form 

D* (S * f) 

where the forwards difference operator is applied to a 

convolved image, or equivalently 

S* (D * f) 

where a convolution operator is applied after the forwards 

operator. (The form of S is trivially different in the last two 

formulas). In the case of backwards difference operator S is 

merely a translation operator, but otherwise is a smoothing 

operator. 
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More generally, restricting attention to decomposable 
operators, a general form for the smoothed numerical 
derivative in the y direction is 

Dy (smoothed) = Sx Sy St * (Dy) 

Dt (smoothed) = Sx Sy St * (Dt) 

In their pioneering paper on optical flow, Horn and Schunk used 

the 1-D smoothing convolutions to calculate a smoothed 

derivative Ey (i,j)  [H & S ] : 
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In detail, the smoothed partial derivative used by Horn and  

Schunk yield a smoothed partial derivative Ey(I,j)  [H.&S] = 

 
 
 
 
 
 
  

Similarly Horn and Schunk smooth out the numerical partial temporal 
derivative : 
 
 
 
 
 

 

yielding as a smoothed time derivative Et(i, j) [H & S] = 
 . . ' 

 k)+E(ij+1,t)+E(i+ 1 j,t)+E(i+ 1 j+1,t)) 

 

In this paper we refer to the unsmoothed estimate of the 
velocity component v (in the case where by construction 
u=0) as 

 

 

 

where as above the D operators are the usual forwards 
difference operators, the convolving vectors (-1, 1). Likewise 
what Horn and Schunk describe as involving "consistent 
estimates" of the partial derivatives is the velocity estimate: 

Et(i,,j) [ H & S ] 
v [H & S )  = ____ . 

E (i,j) [ H.& S ] 

Put another way, simple estimate for v used in this paper 
involves two spatiotemporal filters both 1* 1* 1* 2 
whereas Horn and Schunk use smoothed spatial-temporal filters 
that are 2 * 2 * 2 * 2 in size. The point that must be stated is 
that the use of spatiotemporal filters in this arena is inevitable: 
however, some workers have experimented with spatiotemporal 
filters of wider support. [1],[3]. 

Image Sequence Capture 
Recently commercial frame grabbers have been  released 
which have a capability for capturing and digitizing a 
sequence of image frames. The work described  here was done without 
such an advanced frame grabber, and employed a first generation 
frame grabber (by Imaging Technology Incorporated) with 
single frame capture capability. The captured frame is 
interlaced, and thus features two images with time disparity of 
(1/25) second. Thus the formulas introduced above involving 
just an image pair can be used. provided one bears in mind the 
missing rows in the interlaced image pair. Work to this effect is in 
progress now. 

 

 

 

 



  

Fig 1 The first image of a two image sequence displaying 

sub-pixel flow per frame. This image is derived from the 

upper section of Brodatz image D54 "Pebbles" and is 

reasonably akin to aggregates of interest. The second image of 

the frame differs negligibly to the eye, due to the sub-pixel 

alterations, which were determined by linear interpolation of pixel 

values. 

Experimental Study 

The results reported herein utilise two image sequences, of 

which the first is based on a Brodatz texture number 54, 

Pebbles, from the Brodatz compilation [8]; the second is 

displaced by a velocity field in the y direction. In particular: Case 

A: Uniform velocity used to generate second image. 

Case B: Velocity uniform increases 0 - max - 0. 

The actual image is 512 pixels wide, but only central 500 

pixels utilised. in H&C calculation,  501 for H&S. 

The velocity field has been computed from the two image 

pairs 

(i) Using Horn Schunck formula 

(ii) Using direct formula. 

Typical results are presented in Fig 2. 

Conclusions 

This study was based on the needs for a robust means of 

determining visually the predominantly unidirectional flow rates 

of aggregates and slurries. In practical situations, the camera will 

be placed so as to examine a section of approximately 

uniform motion, modeled by our Case A, or will be set to view 

flow through a sluice or pipe where edge velocity is zero, and 

maximum velocity is in the central region, as modelled by our 

Case B. The graphs presented show that the Horn and Schunk 

expression is a poor estimate for flow velocity. However the 

direct expression we have used gives a good estimate of flow 

velocity where it can be applied; where the temporal gradient 

at a pixel location is zero this quantity cannot be determined. 
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In all plots the known velocity is shown. 
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Fig (2): Comparison of two direct measures of optic Low 

deduced from two image sequence of "Pebbles" of Fig (1). 

In examples on the left the synthesised image movement is 

0.7 pixels=: 

v(known) = 0.7 pixels/ frame 

In examples on the right the second image was synthesised 

In the top two plots, the Horn and Schunck first estimate of 
velocity for this unidirectiuonal flow is given, using the 
formula: 

Et(i,j){1-1 & S} 

v & — Ey(i j){H.& Si 

In the bottom two plots the simpler first estimate 

0 

Note that Horn and Schunk use the above velocity as only  
the initial estimate for an iterative smoothing procedure. 
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