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Abstract  

In computer vision one is faced with the task of discovering the nature of 

objects that produced the light intensity distribution received by the camera. 

In order to solve this problem, one usually uses knowledge of the optics, the 

reflectance properties of surfaces, and of the structure of the objects one is 

expecting to find in a given scene. In many problems in image processing one 

is trying to use knowledge of the imaged objects, or of the image formation 

process, to reconstruct a better image from a degraded image.  

A proper computational formulation of these problems recognises that 

they involve inverse processes that are mathematically ill -posed. This allows 

one to derive systematically, computational schemes based upon regulari za-

tion theory that ensure existence of solution and stability of inversion process.  

Such approaches often suggest particular types of algorithms for efficient 

solution to the problems. These, in turn, often are suggestive of implemen -

tations that are highly parallel, require only local information and simple 

operations. These implementations have the essential features of neural net -

work approaches to computation; we present simulations of these.  

Keywords and phrases: Computer Vision, Image Processing, Regulariza-

tion, Ill-Posed, Neural Network.  

1  Introduction  

This paper will outline the application of regularization theory to the solution 

of several problems in image processing and in early vision. Emphasis will be 

placed on demonstrating how this provides a framework for problem solution at 

the three levels of abstraction: problem formulation, algorithm development, and 

implementation. This corresponds to the three levels of Marr's theory of vision 

([2] pp. 24). Indeed, we can see that many of the ad hoc assumptions invoked 

by earlier workers in vision can be seen as attempts to regularise the inversion 

process; in particular, the often invoked smoothness constraints correspond to 

standard Tikhonov stabilizing functionals. 
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Section 2 introduces regularisation theory and its connection with incorporat ing 

knowledge. Then in section 3, the stochastic extension of standard regular ization 

theory is "shown to be related to statistical physics and neural nets. For 

concreteness, we illustrate this with a simple image restoration example. Section 

4 presents some of our work in investigating these approaches in image restoration 

and computer vision. The last section discusses some of the problems still to be 

solved, and some of the limitations our work has shown.  

The framework presented, naturally links the mathematics of inversion with 

the physics of large scale systems and the emerging neural network theory.  

2  Inverse  Problems:  regular izat ion us ing  pr ior  

information. 

In this section we outline how regularization theory provides a framework for for -

mulation of the problems of inverse problems in image processing and vision. The 

next section extends this standard theory to the more recently proposed proba -

bilistic regularization theory; and thus demonstrates how this problem formulation 

suggests algorithms and implementations through the connection with theories of 

statistical physics and neural networks.  

The most general formulation of inverse problems is that one is given the sensed 

data g, which is produced through the action of an operator A, acting upon the 

data we wish to recover f: 

Af = g.  

In image processing f is a corrupted version of g and A is the imaging process. In 

the vision case the sensed data is the raw pixel intensities, the data of interest f 

describes the objects of interest in the scene (e.g. locus of object surfaces), and the 

operator A is typically a composition of operators describing the image forming 

process. A problem involving inversion of this operator is well -posed [12] [3] if 

we can ensure existence, uniqueness, and stability of solutions. For a variety of 

reasons, failure of one or more of these conditions is common and thus the problem 

is ill-posed. For example A may not be full rank (so that the solution is not unique 

- extra information may be required to restrict the solution space), or A may be 

invertible but ill-conditioned (thus small changes in data lead to large deviations 

in solution - which can be disastrous in the presence of noise), or A may be of rank 

greater than the number of degrees of freedom (the system is overdetermined and 

thus a solution may not exist if any of the measurements contain noise). Typically, 

the imaging process does not preserve all information (it is a 2 -D projection of a 

3-D world and some objects are partially occluded) and thus the problem is ill -

posed in the first sense given. Additional constraints and assumptions restrict the 

solution space, but in the presence of noise, the problem can then become ill -posed 

in either of the last two senses. 

Standard regularization theory provides mathematical tools that enable one zc... 

turn an ill-posed problem into a well posed problem. One method that has been  
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applied often in early vision [4] [5] is to replace the above problem with one of 

finding the solution that minimizes:  

|    |    |  | 

where the first term measures fidelity with data and the second term involves 

an operator that measures suitability of the solution according to additional con -

straints (e.g. smoothness of solution). The last term restricts the solution to an 

admissable family of solutions within which the reformulated problem has a unique 

solution. 

It is through a choice of the functional P that one incorporates prior infor-

mation, constraints, and expectations of the form of the solution. The constant 

  weights the relative importance of these effects and thus reflects our confidence 

in the data in solely determining the solution. An extension of standard regu-

larization theory that views the functionals as likelihood functionals 
1

 often leads 

naturally to a Markov Random Field model that is highly suggestive of algorithms 

and implementations for this problem solution. This will be outlined in the next 

section. 

3 Neural  Nets ,  Statistical  Physics  and Optimiza -

tion 

In this section we extend the standard regularization formalism to the probabilistic 

regularization approach. In so doing, not only are we provided with a more flexible 

method of problem formulation, but we establish a link between this level and the 

levels of algorithm and implementation through the links with the theories of 

statistical physics and neural networks.  

3.1  Stat is t ica l  Regularizat ion  

We will now concentrate on problems in image restoration and in vision but we 

emphasise that the methods have more general applications, particularly in the 

broader field of signal processing [21][22]. The essential common element is that 

such problems are inverse ill-posed problems. 

When a problem is ill-posed a statistical reformulation of the problem (e.g. 

maximum a posteriori, or MAP, estimate) may lead to a well -posed one [40]. A 

commonly proposed stochastic reformulation uses a markov random field model. 

These models have found much use in the theory of statistical mechanics and thus 

also in the simulation of neural networks.  

Problems in image restoration are clearly inverse problems since one is trying 

to recover the original signal from the degraded one. Many of the problems in 

vision are also inverse ones in that we are given observations (the image data),  
lIndeed, classical spline fitting can be viewed in a probabilistic bayesian manner (see for e.g. 

Carmody [8]); thus the early work of Terzopoulos in interpolating sparse ster eo depth maps [39] 

can be viewed as regularization of the problem.  
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have some knowledge of the transformations from object surface to data (such as 

reflectance models and camera models); and we wish to recover the surfaces that 

produced this data. A closely related set of problems in image processing involve 

the recovery of signals degraded by such processes as optical blur and sensor noise.  

A unique solution to these problems does not generally exist due to the paucity 

of data and due to noise. One then requires a regularised solution, or a maximum 

likelihood solution. Using Bayes theorem we have that the probability of the 

solution F = f given the (corrupted) data G = g is: 

P(G|F)P(F)  
P(F|G) = P(G) . 

Thus, maximising the posterior P (FIG) is equivalent to maximising the logarithm 

of the right hand side: 

lnP(G|F) + lnP(F) —  lnP(G). 

Now the second term is a probability measure on the class of solutions and the 

traditional methods of choosing splines of a certain degree of smoothness can be 

seen as attempts at specifying this probability distribution. Such prior models 

usually invoke a smoothness assumption. A typical such choice is to require that 

the solution minimize ∑              for i, j neighbors, which is a discrete version of 

the minimum integral of the first derivative squared. This is equivalent to choosing 

the distribution:  

      
 

 
      ∑               

In the language of statistical physics Z is a normalisation constant called the 

partition function, and the terms in the summation are clique potentials. The 

assumption of Gaussian noise, of standard deviation  , allows us to derive: 

    

Since lnP(G) is assumed constant, the MAP estimate can be found by minimizing  

.    

A comparison of this with section 2 shows that we have a probabilistic interpre -

tation of the regularization terms with   =  2
.The terms involve only nearest 

neighbour information and thus this formulation is highly suggestive of the vari ous 

relaxation algorithms based upon markov random field simulations such as the 

metropolis, the heat bath, or the gibbs sampler method [24]. Such algorithms map 

naturally onto implementations involving highly parallel simple processors such as 

the connection machine or neural network type architectures such as the boltz -

mann machine. These algorithms and some implementations will be discussed in 

the next section. 
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3.2 Neural Nets 

The relationship between neural net models and the physics of large scale mag -

netic spin systems has become widely appreciated since the work of Hopfield [16]. 

The magnetic interaction between spins i and j, given by T i j ,  is the analog of the 

synaptic coupling. Thus the Hamiltonian governing the equivalent magnetic spin 

system, provides an energy interpretation to the dynamics of neural nets. Such an 

analogy was exploited originally only for neural net models of associative memory. 

However, since the system evolves in a manner that finds local minima of the 

overall energy surface, it  was soon realised that such systems are capable of 

performing optimization tasks. By now the relationship between statistical me chanics, 

neural networks, and optimization, is a major area of research. A more complete 

introduction can be found in any of the recent books [17][18] [19] [20]. 

Thus, when we find that a problem is naturally formulated in terms of the 

minimization of a cost function involving many variables, we can exploit this anal -

ogy to map the problem onto a statistical physics system. This allows us to take 

advantage of the sophisticated methods developed in statistical physics for either 

reasoning about the behaviour analytically, or for performing Monte Carlo sim -

ulations. Moreover, we can then exploit the relationship between the simulated 

system and models of neural networks in order to propose viable hardware imple -

ment at ions. 

4 Image Restoration - Computer Vision, as Op-

timization Problems 

In this section we outline previous work in casting problems in machine vision and 

image processing as stochastic regularisation problems. Then we present our own 

work in image restoration and stereo surface reconstruction.  

A common problem in image processing is the restora tion of a picture degraded 

by noise. For example fig. 1. shows a one dimensional profile of an ideal step edge 

and the same edge corrupted by noise. The noise elements are seen to be those that 

are different from the average signal level. Thus the standard  techniques of image 

processing involve a type of spatial averaging (or equivalently, suppression of high 

frequencies in the fourier transform domain); this tends to reduce the noise but also 

blurs the edge. Similar problems occur when attempting to segment the image, 

the edges of regions correspond to large changes in intensity and are thus found 

by locating areas of high spatial derivatives. However, the noise also produces 

large spurious responses to the derivative edge detectors. A s moothing step can 

be carried out, before the edge detection, in order to remove noise, but this also 

reduces the delectability of true edges. Humans have little difficulty in separating 

those regions of large intensity change due to isolated and random noi se from those 

brought about by discontinuities of an underlying (otherwise rather smooth) signal. 

What is required is a characterization of our prior knowledge of the smoothness 

of  the underlying signal and the tendency of edges to form extended contours  
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in two dimensions. This prior information can be included naturally by using a 

regularization formulation. 

Geman and Geman [23] were the first to formulate the general image restoration 

problem in this manner and solve it  by statistical physics methods.  They used 

the more simple smoothness  funct ional  of  Is ing potentials and also  introduced 

a coupled line field that allowed the smoothness potential  to be turned off at 

estimated discontinui ties. We present results of simulations of this process later 

but first show how this has been adapted to solve problems in computer vision.  

Poggio et al [5] were the first to point out that many additional constraints 

imposed upon solutions to problems in vision could be viewed as regularization 

procedures. In particular, the smoothness constraints imposed on solutions to 

optic flow, shape from shading, and stereo reconstruction are seen as regularization 

functionals. The smoothing by gaussian masks before edge detection can also be 

viewed as an attempt at regularizing an ill -posed problem [6]. It is interesting that 

this approach was first suggested purely on neurophysiological basis in the DOG 

filters of Marr [2]. 

It is know becoming widely acknowledged that many of the problems of machine 

vision; such as recovery of optical flow, shape from shading and stereo surface 

reconstruction, can be formulated in this systematic manner [25] [26] [27] [28]. 

Moreover, this approach promises to provide us with a systematic approach to 

integrating the various visual modules by coupling together several random fields 

(statistical systems) [29]. Space permits us to consider only the reconstruction of 

surfaces from a sparse depth map (such as could be obtained by stereo or by laser 

range finding). 

Hutchinson and Koch [30] have proposed a hybrid analog and digital network 

to minimize the following surface functional:  

 

where the terms are a measure of smoothness, closeness of fit,  and number of 

discontinuities respectively. This can be seen as being of the form outlined above 

except that there are terms associated with a coupled line process field. The term 

(1  — l i,) becomes zero, allowing a discontinuity between f i and f j if  there is a 

discontinuity line between them ( l i j = 1). Such a possibility can be estimated by a 

separate module (such as an intensity discontinuity detector). The last term is one 

imposing a probability measure on the configuration of lines introduced by 

imposing a clique potential V
C
(l). 

Taking partial derivatives with respect to fi leads to a discrete approximation 

of  the laplacian operator from the f irst  term. Minimization with respect to this  

term is thus a membrane fitting process [31]. Their hybrid machine has two cyc les: 

minimization of the functional at fixed line process configuration, followed by a 

cycle where the effect of flipping each line process is evaluated. They note tha t 

such a scheme is only guaranteed to find a local rather than global minimum. A 

similar hybrid machine is proposed for the solution of the optical flow field [32 ][34]. 
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4.1 Image Restoration  

Our experiments in image restoration aim to investigate the quality of the various 

proposed stochastic algorithms and their sensitivity to choice of parameters. For 

comparison purposes we use an image similar to that in the original work of Geman 

and Geman [23]. 

The original formulation of Geman and Geman [23] used simulated annealing 

[20] to find an approximation to the MAP estimate. Others have suggested col -

lecting statistics at a fixed temperature [25] or a mean field approximation that is 

deterministic [38]. In these methods one has to pick parameters associated with 

either the annealing schedule or with the relative weighting of terms in the cost 

function. We have space here to show only a few representative samples of our 

simulations for different choices of parameters and iteration method.  

Fig. 2(a) shows an image of rectangles degraded by noise. This is similar to 

one of the test patterns used by Geman and Geman [23]. An acceptable image is 

obtained without the lineprocess field (fig. 2(b)), but is improved by the addition 

of the lineprocess (fig. 2(c)). Fig. 2(d) shows, however, the effect of poor choice of 

. The next figure displays the results of a Marroquin Mean Field Algorithm: figs. 

3 (b), 3 (c) and (d) show results for the deterministic scheme (2,3 and 10 iterations 

respectively). Finally, note that the edge field not only improves restoration but 

allows us to estimate the location of edges in noisy images. The combination of 

surface regularization and discontinuity detection has been suggested as the most 

reliable method for edge detection in machine vision [31]. However, our preliminary 

results confirm the need for accurate methods of determining parameters as well 

as the need for these parameters to be spatially varying [29].  

4.2  Stereo  Surface  Reconstruct ion  

A common approach has been to formulate the solution to a problem in vision as 

a solution to a variational formulation (extrema of a functional). The variational 

formulation leads to Euler-Lagrange equations that can be discretized to yield a 

set of equations that are usually easy to solve in an iterative manner. Sometimes, 

however, the iterative schemes so derived may have poor convergence properties; 

whereas another formulation may lead more naturally to iterative schemes with 

better convergence behaviour. An analysis of shape from shading along these lines 

may be found in Horn and Brooks [1].  

An alternative approach is to avoid solving by the Euler -Lagrange methods, 

and perform direct gradient descent on the functional. In particular, stochastic 

highly parallel methods based upon Markov Random Fields (MRF) offer general 

purpose solution methods that are efficient on highly parallel fine grained archi -

tectures. Moreover, the stochastic element of these methods avoids the solution 

being confined to merely local minima of the functional. Such an approach empha -

sises the close relationship between these problems in vision and recent theoretical 

advances in optimization and neural networks inspired by advances in statistical 

physics. 
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In the stereo surface reconstruction problem, one is given two images of a scene 

where corresponding points in the two images are displaced by an amount that 

depends upon the distance from the baseline between the two image planes and the 

surface upon which physical points lie. This displacement or disparity, determines 

the actual distance through a simple triangulation calculation. However, before 

this calculation can take place one has to find which features correspond in the two 

images. The features are generally simple (local brightness or edges) and numerous 

(otherwise the depth map obtained would be sparse); thus one has many potential 

matches. Selecting the best match is often formulated as an optimization problem, 

one tries to quantify the quality of the match and tries to restrict the number of 

potential matches by assuming depth generally varies smoothly except at isolated 

discontinuities. This introduces two terms into the cost function. We illustrate this 

with the results of simulations involving random dot stereograms (see figure 4a). 

Again we map our data compatibility and smoothness terms, of our regularised 

formulation, onto magnetic interactions of a statistical physics system. This gives 

us a natural neural net like implementation.  

The Hamiltonian for the spin glass equivalent of the neural net is similar to 

that given in [37] and [36]. We consider that the system is a Q layer network of 

N  N spins. The spin at layer r is 1 if the disparity at that site is r (0 otherwise). 

In a direct simulation the proportion of time that a spin takes on the value 1 is 

a measure of the probability that that site has such a disparity. We have used 

both the Ising potentials and the minimum squared first derivative (Section 2) for 

ensuring smoothness of the results. The closeness of fit term is based upon a 3x3 

correlation. 

An annealing schedule can be used to find an optimal or most probable config-

uration [20]. However, instead of simulating directly the underlying spin system 

we have adopted the methods of approximation of Marroquin [38]. Here, the 

evolution of the network is deterministic and within 20 iterations one typically 

converges upon a "mean field" approximation (see fig. 4b).  

The two random dot pictures can also be regarded as a pair from a temporal 

sequence rather than a spatial sequence; the stereo pair becomes a motion sequence. 

Thus similar techniques can be used to segment moving textured surfaces from a 

textured background. We can see the power of the human visual system in this 

respect when we observe a camouflaged animal blend into its background when it 

stops moving but is detectable when it is moving. Thus  our visual system is 

capable of performing such matching functions effectively in a very short space of 

time; it is possible that algorithms similar to those discussed here are used.  

5  Future  Research  

There are a number of "free" parameters that must be chosen in the simulations 

(those imposing the relative weighting of cost function terms and those controlling 

the course of the iteration updates). One of the aims of the simulations we have 

performed is to gain a better understanding of the influence of each parameter and  
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of the range of acceptable values. For example, the relative weighting of continuity 

and correlation terms greatly influences the number and size of disparity levels in 

the solution to the stereogram when noise is present: the higher the continuity 

weighting the fewer are the levels resulting (since those having a significant ma-

jority coerce neighbors to be similarly aligned). This leads to a cleaner image but 

may eliminate small regions of true disparity. Another aim of the simulations is to 

compare the quality of the results with those using annealing schedules or different 

updating strategies. 

An alternative to parameter choice through simulation is parameter estimation 

by either learning from examples or through theoretical derivations. Others have 

suggested some approaches to this [14] [10] [13]. We intend to investigate these 

and similar schemes. 

Furthermore, more elaborate models can be made. For example, a hierarchical 

model can speed convergence of the solution in a manner analogous to the multigrid 

methods of Terzopoulos [39]. In such a scheme sparse points (but now allowing 

the correlations to be based upon large neighborhood averages) can be used to 

identify the major disparity levels and to obtain a coarse approximation to the 

solution, with lower levels providing more detail. Finally, a more complex model 

involving coupled nets can simulate the co-operative effect between different visual 

modules in obtaining a more accurate and robust depth perception [29]. We thus 

intend simulating complex coupled systems of the type outlined in Section 4. 

In the long term we hope to devise architectures that are capable of performing 

successful variants of these approaches in real time. The highly parallel nature of 

the simple calculations involved map naturally onto a massively parallel machine 

such as the connection machine. However, a cheaper alternative is to geometrically 

partition the problem onto an array of transputers [9] [35]. It is also possible to de sign 

specific VLSI architectures for both standard and probabilistic regularization 

algorithms [11]. 

6  Conclusion  

Th concepts of regularization theory have given a comprehensive framework to 

formulation of the problems in vision: at all three levels of problem, algorithm, and 

implementation. Furthermore, the mathematical theory of regularization provi des 

a useful theory for incorporating prior knowledge, constraints, and expectations of 

solution. The exciting prospect is that the analogies with statistical physics and 

neural networks will continue to provide fruitful ideas for development of machine 

intelligence and for understanding human intelligence.  
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Fig. 1. Noise reduction by filtering. 

(a)  - Top. 
A step edge (dashed line) corrupted by noise. 

(b)  - Bottom. 
The step edge filtered with a running mean 

filter. The noise is reduced but the edge is 

smoothed. This not only produces blurred pictures 

in image restoration, but frustrates image 

segmentation in computer vision. Non-linear 

filters, such as running median, often perform 

better but are still unsuitable for segmentation 

purposes. Regularization approaches can provide 

approaches that smooth noise while preserving 

and locating edges. 
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Fig. 2. Image Restoration Using Simulated Annealing. 

(a)  - Top left. 
Original image corrupted with noise. 

(b)  - Top right. 
Image after restoration using simulated annealing 

but with no lineprocesses. 

(c)  - Bottom left. 
Image after annealing with lineprocesses. 

(d)  - Bottom right. 
Image restoration with algorithm using incorrect 

estimation of noise level. 



393 

 

Fig. 3. Image Restoration Using Maximum Posterior Marginals. 

(a)  - Top left. 

Original image corrupted with noise. 

(b)  - Top right. 

Image after restoration using 2 iterations of 

the Mean Field algorithm. 

(c)  - Bottom left. 

Image after restoration using 3 iterations of 

the Mean Field algorithm. 

(d)  - Bottom right. 

Image after restoration using 10 iterations of 

the Mean Field algorithm. 
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Fig. 4. The Mean Field Algorithm used to solve the stereo 

correspondance problem. 

(a)  - Top. 

Two random dot input images, a small square 

in the centre is displaced in one image relative 

to the other. 

(b)  - Bottom. 

Graph of the disparity solution discovered by the 

algorithm. 


