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ABSTRACT 

Deterministic algorithms for decoding IFS (Iterated Function System) sets involves 

determining all the IFS (dynamic) descendants of seed pixels. Timing data was 
obtained for previously describe algorithms, and new algorithms: the scanning 

algorithm; the stack algorithm; and a hybrid combination. Decode time data indicates 

the superiority of the hybrid algorithm 

1. INTRODUCTION 

This paper reviews IFS decoding, and describes in detail new deterministic algorithms 

for IFS decoding, reports on the rate of decoding , and presents timing data using 

these algorithms for decoding four representative IFS sets, together with like data for 

Barnsley's Random Iteration Decoding Algorithm 

1.1 Background 

It has been known for a considerable time (see e.g., [1]) that an instance of what 

later were termed deterministic fractals [4[4] could be specified as the attractor of a 

set of contraction mappings. Barnsley and co-workers,[5][6] pointed out about ten 

years ago that ANY set in the plane, to any desired accuracy, can be approximated as 

the attractor of a set of contraction mappings. Subsequently, Barnsley and Sloan [7] 

have proposed the use of IFS [Iterated Function Systems] - sets of contraction maps 

of which each mapping is an affine transformation - for encoding of 'high quality 

colour images. Barnsley has demonstrated [7][8][9][11] examples of manually 

encoded IFS of exceedingly high compression combined with visually satisfying 

output on decoding. This work showed the potential significance of IFS image 

encoding to image compression and storage, with applications in broadband services, 

as well as to image analysis [10] and synthesis. The major problem to be solved is 

fully-effective automated encoding. Iterated Systems Inc has recently announced a 

system board for somewhat coarse-grained IFS encoding of images. It is now salient 

to devise new algorithms for decoding IFS parameter sets, and to evaluate such 

algorithms for efficiency in comparison to those previously reported. [12[13] 
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2 .  IFS ENCODING OF IMAGE SEGMENTS  

The IFS code [8] for a (two-dimensional) image segment consists of the 

parameters A,B,C,D,E,F of s linear mapping functions W[t], t =1 . . s Such a 

mapping function transforms a pixel coordinate (x,y) according to  
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The decoding of an. IFS parameter set determines a set of pixels which is the digitised 

approximation to the 'attractor set A    the set S of mappings. 

{W[t], t =1 . . s } 

In order to elucidate the algorithms for computing this (approximation to the ) 

attractor, it is useful to introduce the concept of the IFS descendants of a pixel  p = 

(x,y). We call the points derived from p by applying the s IFS maps once, viz 

Wr  p for r=1..s 

the IFS sons of p Likewise the IFS sons of these points are the IFS grandsons 

of p : 
                                                        W  . W. p 

i i 
2 1 

for any pairs of labels i1i2 , In general, the IFS descendants of p are the pixels 

W .  .  . .  W .  W .  W .  W .  i p  
1 1 1 1 

d 4 3 2 1 

for any finite set of map labels, i li2i3 i4 . .id . 

The remainder of this section is necessarily ma thematical, However, using 

the concept of IFS descendants, decoding algorithms are detailed in Section 3. 

The attractor A    of the set S has the property that for any p A     all the 

descendants of p lie in A   . Mathematically A      is the closure of the set of 

points invariant under any finite composition of maps from S. This mathematical 

statement means that a descendant point may be found arbitrarily close to any 

point in the attractor, an important issue for the validity of digital approximations.  

Williams [1] showed that the attractor can also be defined as the closure of the 

set of fixed points of all finite possible products of maps from S:  

. W.  .  .  W  W W W  
       id      i4 i3     i2 i1 

An important corollary of William's result is that the fixed  points of the mappings 

lie in the attractor:  that is, each (unique) f t such that 

W t  ft  =  ft t h e n  ft  A      
   

Note that ft is easily computed by matrix algebra.  
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Hutchinson [3] showed that The IFS descendants of ANY point in the attractor of 

an IFS set are dense in the attractor. This result provides the underlying theory for 

deterministic and stochastic algorithms for the digital approximation of an IFS 

attractor, which is simply the decoding - to a chosen scale - of the IFS set. 

3  D E T E R M I N I S T I C  D E C O D I N G  A L G O R I T H M S  

The basic scheme for deterministic algorithms for the decoding of an IFS set is to 

compute all the IFS descendants of the seed pixel(s). (Hutchinson [3]). The 

natural seed pixels are the fixed points of the mappings of the IFS set. 

To explicate this concept consider the case of a set described by an IFS set 

involving three mappings: 

If there is a single seed point 0 and 3 maps in the IFS set, there are 3 immediate 

descendants, simply called sons, and nine grandsons. However, these descendants 

pixels necessarily include previously marked pixels. In analogy to breadth-first and 

depth-f i rst  t ree searching,  there are two basic a lgori thms schemes for 

deterministic algorithms, as indicated in Fig 1: 

 

 

 

 

 

 

 

 

Fig 1 Sequence of marking of 2 generations of descendants from seed pixel 0 

with 3 maps In the IFS set.  O n  the left, generation-by-generation marking as for 

the Scanning Algorithms On the right, branch-by-branch marking
-
 as for the 

Stack Algorithm. 

It is an inherent feature of an (unpruned) IFS descendant tree that all pixels will 

be redetermined at deeper levels of the tree. Dubuc and Elqortobi [12] pointed 

out the necessity for some form of pruning scheme, so that the descendants of a 

pixel are determined precisely once. These two authors give a mathematical 

account of the use of lists of pixel coordinates to keep a record of determined 

pixels. It is not clear precisely what data structure was used by Dubuc and 

Elqortobi in implementing these lists. 

In the deterministic algorithms described here, an image array holds the iterative 

outcome of computation, and pixels that have been determined to lie in the 

attractor are 'marked' in this array. In unpruned algorithms the image array can be 

used to provide an indication of the increase -if any - in the number of marked 
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pixels, and thus determine the termination of decoding. In the pruned algorithms, 

the array can also be used to indicate both a newly marked pixel, and one whose 

descendants have been determined, 

3 .1  Barns ley ' s  Determinis t i c  Algori thm  

Barnsley's Deterministic Algorithm, [8] has a similarity to Conway's Game of 

Life, in that it involves the use of two image arrays, one the 'current iteration' of 

the decoded image, the other the 'next generation' image. The cur rent iteration 

array is scanned to locate marked pixels, whose sons are marked in the next 

generation image array, At the end of the scan, the next generation array 

becomes the current generation, and a 'blank' next generation array is produced. 

The algorithm has pedagogic interest as the seed pixels need not be chosen to lie 

in the attractor, as the descendants of any bounded set of pixels will ultimately lie 

in the attractor. Barnsley's algorithm is patently grossly inefficient, and is not 

amenable to pruning 

3.2 Scanning  Algorithms  

In this paper a new class of deterministic algorithms, called scanning algorithms, is 

introduced in which a single augmented image array holds relevant state 

information for each pixel, including the information, essential for pruning, as to 

whether descendants of a marked pixel have already been determined. These 

new algorithms have the feature that during a scan, the descendants of marked 

pixels are marked on the (same) image array, so that the array contains a mix of 

generations, and the actual scanning sequence, can affect the decoding rate.  

3.3  Stack Algori thms  

In the "stack algorithm," the descendant tree, to some specified depth, is followed 

in a depth first way, as indicated in Fig 1. The depth-first mode of traverse does 

limit stack needs compared to breadth-first traverse, but nevertheless the depth of 

descent is limited by stack size. In the implementations described here, the stack 

storage was achieved by use of  recursively def ined procedures.  In the  

implementation detailed here, the image array is appropriately marked as the tree 

is traversed. This scheme permits a pruning scheme, whereby once a descendant 

is reached whose sons have been determined, that descendant limb is no longer 

followed. 

3 .4  Barns ley ' s  Random Ite rat ion Algor i thm 

Barnsley and Demko  (ref  in [5])  developed  what Barnsley [8] later   termed   the 

'random iteration algorithm' in which a probability is ascribed to each mapping in  

an IFS set. Starting from an arbitrary pixel, only a single (Markov) chain of 

descendants is followed. There is no definite terminating condition implicit in the 
algorithm. 
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Figure 2. Scanning Modes: Diagrams 

illustrating the three modes of image 

scanning used in the experiments reports 

herein. 

In Scanning algorithms, the entire image 

array (600*400 pixels herein) was scanned 

to locate marked pixels, and the IFS sons 

are marked on the array during the same 

scan. 
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3.5 Hybrid algorithms  

It takes as long to scan an image array if there is one marked pixel therein as if 

there are many. Hence scanning algorithms are very slow initially. In contrast, for 

iterative algorithms such as Barnsley's Random Iteration and the Stack Algorithm, 

initially there is very high efficiency, as only 'new' pixels are marked. 

However Barnsley's Random Iteration Algorithm become highly inefficient when 

most - but not all - pixels in the attractor have been marked - as most pixels 

encountered on the image traverse have been previously marked - no pruning is 

possible. With regard to the Stack Algorithm introduced here, there are problems 

of stack overflow if one attempts to pursue this algorithm to such depth as would 

mark all pixels in an attractor. In contrast the Scanning Algorithm is effective in 

finding the last few unmarked pixels of an almost totally decoded IFS set. Hence, 

it is of interest to investigate a hybrid algorithms, with an initial Stack Algorithm 

Stage, followed by Scanning In the work reported here the Hybrid Algorithms 

involve a 10 level Stack Algorithm first stage. 

 

QUAD FERN MYTREE SIERPINSKI 
Figure 4. Decoded output of the four  IFS sets used in this study 

4 .  EXPERIMENTAL RESULTS  

Timing data has been found for decoding of four IFS sets which cover a range of 

extremes: Quad, Fern, Sierpinski, and Mytree, whose decoded output is shown 

in Fig 4, with transform data presented in Fig 3. Experiments featured: 

  Implementation of  code in Turbo Pascal 5.5  
  Use of f loating point arithmetic in computation  
  Execution on a 16Mhz 3086 clone NOT equipped with a maths coprocessor  

  Use of video Ram accessed by DOS routines as the image array that is 

scanned and marked 

  Image scan areas 100* 100 [no of pixels in decoded images is tabled  
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Comparison of Barnsley and Six Scanning Algorithms 
with scan algorithms commencing from the set of fixed points only 

SOLID 

1F S 

set  
used 

Barnsley  

Random  

Iteration 

secs 

TV Scan  

no  

pruning 

secs 

TV Scan  

pruned 

secs 

XY Scan  

no  

pruning 

secs 

XY Scan 
with 

.   
pruning 

secs 

fwd-rev  

no  

pruning 

secs 

fwd-rev  

with  

pruning 

secs 

quad 44.65 21.4 *11.65* 25.65 13.89 26.65 14.65 

fern 170.65 31.20 14.23 24.65 *13.18* 23.65 16,65 

mytree 447.81 41.80 *18.62* 49.76 23.65 50.25 22.65 

cantor 104.65 22.65  16.65 23.39 19.65 15.65 *13.65* 

*time* denotes the fastest synthesis time for each IFS set 

Comparison of Barnsley Random Iteration with Six Hybrid Algorithms
   

Pruned scan algorithm preceded by a 5-level pruned stacking algorithm,; 
     Unpruned scan algorithm preceded by a 5-level unpruned stacking algorithm. 

SOLID 

IFS  
set  

used 

Barnsley  

Random  

Iteration 

secs 

TV Scan  

no  

pruning 

secs 

TV Scan  
pruned 

secs 

XY Scan  

no  

pruning 

secs 

XY Scan  

with  

pruning 

secs 

fwd-rev  

no  

pruning 

secs 

fwd-rev  

with  

pruning 

secs 

quad 44.65 15.65 7.65 14.34 18.24* 15.65 9.65 

fern 370.65 35.80 14.28 21.65 110.38* 27.65 16.65 

mytree 447.81 46.65 '16,13* 41.65 '16.13* 49.77 19.65 

cantor 104.65 18.65 11.75 18.65 13.34 '11.10' 10.65 
 

*time' denotes the fastest synthesis time for each IFS set . 

Number of pixels marked during these algorithms
.
 

SOLID 

IFS  

set  
used 

Barnsley  

Random  

Iteration 

TV Scan  

no  
pruning 

TV Scan  

pruned 

XY Scan  

no  
pruning 

XY Scan  

with  
pruning 

fwd-rev  

no  
pruning 

fwd-rev  

with  
pruning 

quad 2500 2601 2601 2601 2601 2601 2601 

fern 1921 1938 1938 1938 1938 1938 1938 

mytree 2024 2133 2133 2133 21.33 2133 2133 

cantor 611 619 619 619 619 619 619  
FIG 5 Timing Data for 100*100 Image scan region. 

5 .  COMMENTS AND CONCLUSIONS  

Image processing has been an application driven discipline, with the needs of early 

lunar and space exploration directing the basic formalism. The mathematics used 

in the established algorithms is of nineteenth century vintage. More recently, the 

special role of Tikhonov's regularization in explicating 'From X to Y' computer 

vision algorithms has been realised by this writer and others. Several workers, 

notably Pentland, have proposed that fractals may have a useful role in the 

analysis of 'natural scene' images. However, the Barnsely  proposal to use IFS 
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encoding for the compression and possibly the transmission of two dimensional 

images involves the first major application of modern dynamics and chaos theory 

to image processing. [6] 

This paper, has been devoted to detailing new algorithms for decoding an IFS set, 

and discussing efficiency for implementation by a serial computer. The IFS sets 

chosen for experimental study (See fig 3,4) cover extremes of sparseness, from 

QUAD to SIERPINSKI so that they can be considered reasonably representative . 

The data collected for 100*100 image regions complements that previously 

presented by the author [13] for 400*600 pixel images. The data as tabled in 

Figure 5, together with that in [13] indicates that, at least for the IFS sets 

examined, a pruned scanning algorithm, with either a TV scan, or an XY-scan, is 

the fastest of the 'simple' algorithms. The hybrid algorithms studied, with depth 10 

Stack Algorithm preceding a Scanning Algorithm, were markedly faster.  

A previous paper by this writer [10] discussed the difficulties in the analysis of IFS 

encoded images due to non-uniqueness of the encoding. Apart from [13] the only 

other published account of the efficiency of IFS decoding algorithms, is that of 

Dubuc and Elqortobi [12], which gives timing data for various algorithms but does 

not give detailed implementation details. The results presented here agree with 

those of [12] on. the importance of pruning for speed-up, and on the slowness of 

Barnsley's Random Iteration Algorithm; However, in addition to our data for new 

algorithms, this paper highlights the significance of scanning mode for decoding, 

with markedly different times for different image scan modes.  
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