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ABSTRACT Using a multi-resolution texture 'tuned' mask, we have realized a multi-scale texture clas- 

sifier based on Laws' texture energy term, able to work under a large range of Brodatz textures with various 

scales. A tuning scheme has been developed to produce the mask for image segmentation by introducing a 

guided random search to optimize the suggested performance index, using a double-linked list data structure. 
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INTRODUCTION 

Image segmentation is a basic approach in image analysis whereby the image is partitioned into meaningful regions 

of common property. Image features, often referred to as texture features, provide a higher -order description of the 

local image content, and image segmentation by texture property has been studied by many researchers121, [41, 

[5]. Historically, approaches to texture discrimination have been the analysis of the two-dimensional Fourier power 

spectrum of the image, co-occurrence matrices, and the use of various local property measurements. 

Convolution masks have been used with considerable success for the task of texture discrimination[3] because 

they are computationally less expensive and more in keeping with human intuition relating to texture perception than 

Fourier methods and co-occurrence matrices. Previously we have developed a texture classifying scheme that is a 

generalization of the method devised by Laws[3]. In Laws' approach a set of fixed feature sensitive masks are 

available; one mask sensitive to spots, another to waves, one edge sensitive, one described sensitive to ripples. The 

image is convolved with each of these masks in turn, and a classifier is determined for each pixel based on the 

variance within a small(15 * 15 or 17*17) window. We showed17] that in the Laws' approach the variance of the 

classifier is very high. Benke and Skinner[1] introduced the idea of using a single tuned mask in Laws' scheme. 

However, their method as described is not properly extendable to the discrimination of many textures, as the textures 

are constrained to be in a fixed order. In our approach, we use a single tuned zero sum mask, and use as classifier 

the mean square pixel value within a sampling window. In our tuning process the mask parameters are adjusted so that 

the one parameter classifier has the properties most suitable for the application; a dynamic re-ranking scheme is used 

to reorder texture number to maximize the differences between all pairs of textures. 

In this paper we are concerned with the development of a multi-scale texture classifier based on using convolution 

masks. New performance indexes are proposed as the desired property for tuning the mask to capture the multi-scale 

features of the given texture, and those that differentiate from other textures. We both segment and identify regions 

of common textures of unknown scale using our multi-scale texture 'tuned' mask 

This paper describes a texture classifier function that can be applied to segment collages of different textures, 

so that pixels within the same texture, at a different scale, are assigned the same label. The problem arises in remote 

sensing, particularly in aerial reconnaissance, and has application to ambulatory robotics. The method is an extension of 

the mask tuning procedure previously developed by us[8], involving training over pure texture samples, utilising a 

single-linked data structure, and a tuning index that minimised the standard deviation SDV of the classifier within pure 

texture while maximising the dispersion for different textures. The extension has involved tuning over equal size 

pure texture samples of different scales, the utilization of a double-linked data structure, the further development of 

a guided random search procedure for optimising the performance index. 

2. D I S C R I M I N A T I O N  S T R A T E GY  

A texture is a distribution in a pattern space. The discrimination task contains feature extraction and classifier 

function design. For an adaptive system, the feature extractor will be adaptive wits adjustable weights. The 

discriminant function will have no weights, but will be dependent on the extractor output_  

In this section we describe, by replacing Laws' fixed masks with our 'tuned' mask, an adaptive texture feature 

extractor for the discrimination task with simple classifier function. 

2.1 Adaptive texture feature extraction  

In designing an optimal feature extractor, the primary aim is to execute tra.:1-2::=z..:iczs pa.:t
-
--n space 

in order to produce greater inter-class separation in feature space. 
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The statistical approach to texture segmentation pioneered by Laws[3) is notable for its computational 

simplicity. Laws' approach might be compared with co-occurrence matrix methods, where the pairwise dis-

tribution of gray-scale is determined( at high cost) in a local window. In contrast, in Laws' approach, one of 

the set of attribute masks is applied to the input textured image, and the classifier for each pixel in the input 

image is determined from those of the corresponding pixel in the convolved image. For Laws, the classifier 

used was the local variance, computed in a 15* 15 or 17*17 window about each pixel of the convolved image. 

Laws computed such a classifier for each of four masks, shown in Figure 1.  
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Figure 1. Laws four most powerful masks 

Basically, Laws' scheme has two steps. The first step involves convolving the whole image with a zero sum 

mask. After convolving, the (signed) image has zero mean. The second step involves labelling the difference 

between the convolved image and the real image. Laws studied the power of different convolutions and concluded 

that the masks in Figure 1 are the most useful.  

Although individually Laws' masks can be used in isolation as a texture discriminator,  a possible limitation of 

Laws' approach lies in the definition of the convolution masks, each of which contains the fixed elements. We 

extend Laws' approach by replacing constants of the traditional masks with variables which can be 'tuned' to meet the 

appropriate performance index. Such a new mask is called 'tuned' or adaptive mask. Our aim is to create an 

adaptive mask to capture the feature of the given texture dynamically, that is, the mask must be capable of 

being trained on a representative sample of  the texture. In order to reduce the number of parameters to be 

determined, the 5 * 5 tuned masks A evaluated are constrained to be zero sum in each column. Therefore there are 

20 parameters to be determined. 

The 5 * 5 'tuned' mask can be interpreted as a transition matrix that is iteratively adjusted in order to maximize a 

performance index. Here the texture energy term TE via the mask(the statistical feature of the texture) is introduced 

as the adaptive texture feature. After the completion of a given number of trials, the parameter matrix will have been 

tuned to extract the texture feature by producing a strong response to the required performance index. 

2.2  Mask tuning cri teria  

By introducing the TE via 'tuned' mask as adaptive texture feature extractor, we require a discriminant function to 

maximize the dispersion amongst an arbitrary set of textures scale independently.  

Assume that we have defined a simple discriminant function f(z), and that the texture energy E(x,s) of texture x 

at scale s, via 'tuned' mask is introduced as the adaptive texture feature measure of certain scale s. The training 

procedure is to optimize the mask coefficients to maximize the texture feature dispersion of different textures with 

high feature convergence of the same texture with various scales. This is achieved via a carefully tailored 

performance index used in training. Traditionally, one requires that the discriminant be a least squares best fit to 

the data, so that 

e= E
N

i  (E(z) k f (x))
2
 

is minimal. For simplicity, we assume that the discriminant function f(x) is linear, so that the least squares fitting 

requirement amounts to the maximization of 

  

 
 

 

 

In order to maximize dispersion of the TE,  we should also seek to maximize the function d' 

d' = minimum{ABS(E(x) — E(y))/ (E(x) + E(y))} , 
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where x, y refer to different textures in the given texture set, and E(x), E(y) represent their texture energy respectively 

with a certain mask. 

A trade-off is required between good linearity - achieved by maximizing d, and good dispersion, achieved by 

maximizing d'. In previous work we used the product d* d' as the performance index which is optimized in training. 

In the work reported here, we also needed to minimize the texture energy difference computed within each class of 

scaled textures, while maximizing the difference between texture classes. Our multi-scale performance index D is 

computed in term of d1 and d2, where d1 represents the texture energy dispersion of different textures in the form of 

d1 = minimum(ABS(E(x,sx)— E(y,sy))/( E(x,sx)+ E(y,sy))}, 

and d2 represents the texture energy convergence of the multi-scale texture in the following form: 

d2 = maximum{ABS(E(x, sx) — E(x,sy))1(E(x,sx)+ E(x,sy)}, 

where sx, sy refer to different scales while x, y refer to different textures in the given texture set, and E(x, sx), 

E(y, sy), E(x, s3y) represent the texture energy with certain scale. 

In the segmentation task described here D alone is used as performance index in training, which is defined 

as 

D = d1/d2 

However, for the training of a mask that discriminated between 15 different textures, the product of D * d was used 

as the required performance index. 

2.3 Parameter optimization  

A search procedure is required to find an optimal mask subject to specified performance index. Many of the 

traditional search procedures use gradient approaches, which are based on differential calculus. Though such methods 

are simple, they are highly susceptible to entrapment at a local extremum, so that the result achieved can be 

dependent on the starting point. 

Random search techniques are a standard optimization strategy in the design of adaptive control sys tems[11J. 

However, a conventional search strategy does not use its past experience to modify the search strategy, and as a 

consequence, it can be highly computationally expensive. Note that heuristic approaches utilize information gained 

from the problem domain in order to influence the search process, we propose a guided search strategy based on 

gradient and random search guided by the heuristic learning. 

Assume that we have a positive figure of merit, f, which is a function of a large number of variables expressed 

as a vector V = (v(1), v(2), ..., v(n)) in an n-dimensional space. The problem is to find the set of variables which 

will maximize f subject to a given set of constraints. Similar to the random search, we begin the search with two 

random guesses, V1 and V2, for the required vector, with corresponding values fi and f2 for the figure of merit. Base on 

the gradient search approach and the heuristic learning algorithm, we propose that a further estimate for the vector 

could be 

3. TRAINING SYSTEM 

Previously we have used a single linked list so that the textures, whose discrimination function f(x) has been 

assumed to be linear, can be dynamically re-ordered to achieve both maximum linearity with minimum dispersion. In 

order to be able to impose the requirement of minimum dispersion between the same (class)  
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textures of different scale, a double-linked data structure(see Figure 2) has been developed. This section  describes 

the special data structure and re-ranking scheme. 

3.1 Dynamic texture database via l ink list  

In texture discrimination, the more the textures can be separated, the more powerful the classifier is. It is 

necessary to create a large and dynamic texture data set for tuning the mask for multi -scale texture discrimination. 

For experimental purposes, Brodatz textures have been chosen as the natural texture samples by the researchers 

in this area such as Laws, Pietikainen, Rosenfeld and Benke, etc. However, the number of the textures involved is 

very limited. By introducing a two dimension link list in which each texture in different scale is linked by column 

while different textures are linked by row, we create a dynamic texture data set of large size. The structure is shown 

in Figure 2, in which each texture sample is a node in the list:  

Figure 2. Two dimension link list 

3 .2  Learning procedure  

In a training system, a search procedure is required to find the particular parameter set that optimizes the 

objective functions. Since heuristic approaches utilize information gained from the problem domain to influence the 

search process, the heuristic random walk is applied in our training procedure and results in a guide search strategy 

based on experience or discovery. It makes use of the history of the calculation to refine the estimate of the optimum 

parameter set. This heuristic method suggests the following algorithm:  

(a) Generate a random parameter set, the current set, and compute its merit function.  

(b) Generate a new random parameter set, the randomised set, and compute its merit function.  

(c) Generate a parameter set, the learned set, by averaging the current and the randomised set, weighted as their 

merit functions. Compute the merit function for the learned set.  

(d) Define the current parameter set as the set having the highest merit function. 

(e) If an arbitrary iteration count is not exceeded, return to step (b), otherwise consider the current set as an 

approximation to the optimum solution. 

4 .  TE X TU R E  C O M P O S I T E  I M A G E  S E G M E N T A T IO N  

Image segmentation is the division of an image into different regions, each having certain properties. The 

segmentation of the textured image can be usefully considered as a two stage process. In the first stage, referred 

to as pixel labelling, each pixel is tentatively classified by evaluating a classifier function at all pixels of an image. 

In the second stage, referred to as region modification, relaxation methods (including region growing), which embody 

region smoothness heuristics are applied. In this section we detail the first stage of segmentation using texture energy 

TE based on a multi-resolution 'tuned' mask. 

Our adaptive mask is 'tuned' on the samples to produce a large difference of the texture energy term between 

different samples, high inner-class clustering of different scaled texture, and the low texture energy standard deviation 

for each sample, it will be a promising approach to segment the texture composite im age by simple energy term 

thresholding. Such a procedure can be outlined as follows: 

Step 1: Generate a convolution mask which optimizes the proposed performance index D on the set-up 2 — 

D multi-resolution texture sample link list. 

Step 2: Convolve the different texture images with this optimized mask and calculate their texture energy terms 

respectively. 

Step 3: Convolve the texture composite image with this optimized mask. 

Step 4: Convert the convolved texture composite image into a so -called energy image by calculating the energy 

term by 15*15 window size. 
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Step 5: Considering the texture energy term of the original texture composite, choose the energy threshold value to 

separate different textures in the texture composite image. 

Step 6: Assign the pixels of the energy image into different groups; i.e, foreground or background, according to the 

selected energy threshold value. 

5. EXPERIMENTAL RESULTS 

The textures used in this study were selected from Brodatz's well-known compilation. We chose the following 

15 textures, including 8 Brodatz textures used by other workers augmented by 7 visually similar textures: In this 

section the segmentation results of different scaled texture composite images show the potential usage of our 

scale-invariant tuned mask in textured image segmentation with simple classifier and low computation cost. Being 

tuned on texture samples with different possible resolutions, the 'tuned' mask is capable of classifying different 

texture pixels of unknown scale by simple texture energy thresholding. All the textures used in our experiment are 

carefully selected from Brodatz which are visually similar. Contrast to the previous research, up to 15 textures with 

(1 : 3)
2
 scale range are used to verify our scheme. They are calfd24, canvd20, canvd2l, corkd4, grassd9, papd57, 

pebbd54, pigd92, raffiad84, sandd28, sandd29, strawdl5, wired6, wiredl4 and woold19, as numbered in Brodatz 

texture set. All these texture images are digitised with pixel gray levels in the range 0 - 255 and histogram equalized. 

Figure 3 shows two texture samples corkd4 and raffiad84 with three different scales  (1 : 1)
2
, (1 : 2)

2
 and (1 : 3)

2
. 

corkd4(scale (1:1)
2
) corkd4(scale (1 : 2)

2
) corkd4(scale (1:3)2) 

 

raffiad84(scale (1:1)
2
) raffiad84(scale (1:2)

2
) raffiad84(scale (1:3)

2
) 

Figure 3. Texture samples at 3 different scales 

The adaptive multi-scale mask Md listed in Figure 4 is 'tuned' on the 15 texture sample set listed above at the 

three scales indicated, so as to maximize the performance index D. Using this mask, the corresponding texture energy 

TE was determined for each texture at each of the three scales. These results are presented in Table 1 in rank order 

of TE. The results in Table 1 show good dispersion of the TE for the 15 different textures over a range of values 261 

— 1621, with the TE for the same texture at different scales being highly convergent. 

As an example of our scheme in multi -scale textured image segmentation, we applied our 'tuned' mask Md to 

the texture composite image at three different scales for segmentation. Satisfactory results are shown in Figure 5 

for collages of two textures differing in rank by 2. 
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Figure 4. The 'tuned' mask Md defined in the text 

Table 1. Texture energy in rank order computed using Ma 

Texture TE(scale (1 : 1)
7
) TE(scale (1 : 2)

-7
) TE(scale (1 : 3)

2
) 

canvd20 261 270 279 

sandd28 378 385 396 

calfd24 447 460 472 

pebbled54 538 549 568 

strawd15  6 2 6  640 665 

canvd2l 737 748 767 

wook119 817 831 850 

wiredl4 907 922 934 

pigskind92 992 1016 1031 

sandd29 1071 1093 1123 

paperd57  1 1 6 4  1181 1200 

wired6 1286 1299 1316 

rafEad84 1377 1401 1464 

grassd9 1492 1525 1572 

corkd4 1621 1657 1698  

template 

 



 

 

Segmented image Segmented image Segmented image 

Figure 5. Examples of multi-scale image segmentation 

6. Conclusion 

We have shown that the mask tuning procedure previously developed by us can be extended to produce a 

mask that will classify a pixel as belonging to a particular texture irrespective of local image scale (over a scale 

range). Essentially the mask determined selects the scale invariant(over a certain range) statistical features of a 

texture that distinguish it from other textures in the training set.  

In the experiments reported here mask tuning involved 15 Brodatz textures over the scale range (1 : 1)
2
 to (1 : 

3)
2
. It was found that for all textures, the classifier function differs by only a few percent over the scale range, 

while the difference between different textures is of the order of  15 — 30 percent. 

There is significant computational cost in the training process, but the application of the single mask so 

determined to distinguish a moderately large number of different textures is very computationally cheap, leading to 

potential application in materials handling, in remote sensing, in the handling of agricultural products, and in 

ambulatory robotics. In such applications, the convenience of scale insensitivity is often an advantage. A current 

limitation of the texture classification system described here is its sensitivity to orientation. This warrants further 

work which is currently in progress. 
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