
 Harvey A. Cohen and Dougal Beilby

Using Khoros/Cantata as a Visual
Programming Language for Process
Simulation

Harvey A. Cohen and Dougal J. Beilby
Computer Science and Computer Engineering
La Trobe University Bundoora Victoria

Australia 3083
Email: H.Cohen@latrobe.edu.au

Abstract

The paper describes experience in using the Visual

Programming Language Cantata in the implementation of a

specific process control simulator - a Digital Logic Simulator.

Cantata is the VPL component of Khoros, a comprehensive

image processing system developed for the X-Windows

environment, has extensive image processing capabilities for

graphic and imagery rich simulations Although Khoros/Cantata,

which is based on a very highly specified data-flow model for

image processing has no actual state-transition handling scheme,

we found that propagating a 'common clock' to all processing

elements enabled a proper sequencing of sequential processing.

Keywords: Visual Programming Language, Khoros, Cantata,

Simulation,

Simulation and Khoros/Cantata

This project involves the development of a visual programming

system for simulating systems that are composed of stable

elements with interconnections and communications. The

2 OZCHI 93 Proceedings

system is to provide a graphical user interface that will allow the

user to program by drawing a visual representation of the system

to be simulated on the computer screen. Systems that are

composed of stable elements with interconnections and

communications, are inherently pictorial, and as such make a

diagraming based system of visual programming the obvious

choice. In the realm of image processing just such a visual

programming scheme has been developed by Ransmure et al at

the University of New Mexico. It is a large system by current

standards - being some 60 Meg in size, with the actual visual

programming sub-system called Cantata. Khoros is well

documented and highly extensible. It is based on a data flow

model for image processing. Cantata has the hooks for

programming this data-flow model, through use of widgets

called glyphs - which feature input and output buttons, whose

interconnection by the user clicking with a mouse directs data

flow. In this paper, for clarity, we refer to Khoros/Cantata

rather than Cantata. Our implementation of the digital logic

simulator in Khoros/Cantata, where the focus is on the state

sequence of logic gates, demonstrates that such a data-flow

model can be purposefully used for process simulation.

Process flow Modelling.

A simple sequential process has the form:

Initial --->
Process 1

at time t --->
Process 2

at time t ---->Final Output

where the arrows denote the flow of output at each stage. More

elaborate systems have multiple outputs and parallel processes

and even feed-back of outputs. In a simulation of such process

flow one wishes to display the state of each process at a given

time. Digital logic circuits modelling sequential counter logic,

as embodied in counter operations, have precisely this process

structure, and so provide the simplest instance of sequential

processes for credible simulation. On the other hand, a

simulation based on Khoros/Cantata must use the data flow

model implicit in image processing:

Initial_Image ---> Process1 ---> Process2 ---> Final Image.

The Cantata widgets - glyths - have buttons whose visual

interconnection direct the corresponding data flow. In fact the

scheme is that temporary files are created corresponding to each

Harvey A. Cohen and Dougal J. Beilby 3

link, so that - for a simple examples like that drawn with no

branches or loops -- implementation is in the form of Unix-

Pipes:

Initial_Image|Process _|Process_2|Process_3>Final_Image

where Initial_Image and Final_Image are file names, and the

pipe | denotes file transfer.

Simulation of Digital Logic

Digital logic involves just a few stable devices, logic gates and

flip-flops, which have for the specialised user well-known

graphical forms. The on-screen construction of simple circuits

via selection of these processing elements, and their

interconnection, provides a rapid means of producing most

sequential logic circuits, In sequential logic circuits, one is

concerned with the sequential behaviour of all circuit elements,

following a sequence of inputs. In a digital logic simulator once

a circuit has been generated on-screen the user can view the

sequence of logic states for all elements for some chosen input

sequence.

To clarify matters, a simple circuit involving three JK flip-flops

and one AND gate is shown:

 J

 K

 Q

 Q

 J

 K

 Q

 Q

MODULO 5 COUNTER

 J

 K

 Q

 Q

J1

C B A

CLK

Certain digital outputs of interest in a simulation are labelled.

However, what is vital for our purposes is the common signal to the

flip-flops - a timing signal. In our simulator implementation the

timing signal is propagated to all processing elements, not just to

those where the common clock serves it usual role in synchronization.

4 OZCHI 93 Proceedings

By conceiving of the common clock in this way a sequence of time

states can be stepped through in the simulation. It is notable that in

many published circuits the actual common clock line is not shown.

This is actually a desirable situation for a simulator, as it eliminates

excessive clutter of lines whose interconnection is required.

Conclusions.

Khoros/Cantata is based on a simple data-flow model, - with no

explicit state-transition handling capabilities (Jacob 1985) and

not really intended for displaying state evolution for interacting

processes. Nevertheless we have been able to implement a

digital logic simulator using Khoros/Cantata. Our methodology,

involving use of a common clock input for all processing units,

not just those 'really' connected by a common circuit clock,,

means that a sequence of 'time instants' is an input to all

elements: this digital logic strategy can be applied to general

simulations. Thus Khoros/Cantata can usefully function as a

VPL for arbitrary process simulations. It is notable that

Khorus/Cantata - is supplied to educational institutions at a

nominal cost - - but boasts a extremely large library of image

handling routines. We have not had an opportunity to make a

comparison with the better known general purpose graphical

toolkits such as Motif and InterViews (Linton et al 1988)

References

S. Chang, (1990) Principles of Visual Programming Systems, Prentice Hall

New Jersey.

S. Cook et al (1989) Visual Programming of User Interfaces, in A. Kilgour

(editor), Graphics Tools for Software Engineers, Cambridge, Cambridge

University Press, pp. 103-112.

R.J. Jacob (1985) A State Transition Diagram Language for Visual

Programming, IEEE Computer, 18(8) 51-59.

M.A. Linton, P.R. Calder, J.M. Vlissides (1988) InterViews: A C++

Graphical Interface Toolkit, Technical Report CSL-TR-88-358, Stanford

University.

R.V Rubin , EJ Colin SP Reiss ThinkPad: A Graphical System for

Programming by Demonstration, IEEE Software, March 1985, pp. 73-79.

.

