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Abstract

Gray-scale image segmentation involves attributing a common region label to all pixels of the same gray-scale
that are (digitally) connected. A new algorithm for segmentation is described that involves labelling each pixel
with an index label on a forward raster pass, while at the same time constructing a minimal adjacency table
(MAT) for the image. For parallel implementation, this algorithm is applied separately to sub-images, with
overlapping boundaries, to yield labelled sub-images with  MATs, together with adjacency tables for each
overlapping boundary. The algorithm has been implemented using PVM on a local network.

1.   INTRODUCTION

Gray-scale image segmentation involves attributing
a common region label to all pixels of the same
gray-scale that are (digitally) connected. The classic
Rosenfeld-Pfaltz algorithm involving two passes
through an image can be readily extended to gray-
scale, but is not simply parallelisable. The problem
with parallelisation is that for  geometric
decomposition of an image into sub-images not only
are some regions broken into two, with some pixels
in adjoining regions, but within a given region the
pixels in a (whole-image) connected region may be
connected only via chains of connected  pixels in
adjoining regions.

The first author developed a one-pass image
segmentation algorithm[ ..] that involved

The key idea of the Rosenfeld-Pfaltz algorithm is the
assigning to pixels of a “provisional” region label
during a raster-scan, new labels being assigned to
pixels  not adjacent, to “North” or “West” of
previously labelled regions. In the Rosenfelf-Pfaltz
Segmentation Algorithm, labels are corrected during
a so-called backwards pass, where starting from
bottom right hand image corner, the image is
reverse raster scanned, and labels of adjacent pixels
to “South” and “East” used to correct the labelling.

A one-pass image segmentation algorithm was
developed by the first author which involves the use
of a Minimal Adjacency Array,  similar to the array
used in the well-known Kruskal Algorithm for
Minimum Spanning Trees. In this algorithm, a
forward pass through an image is used to give
“provisional” region labels to each pixel, the labels
more other regions.

being determined as for the Roenfeld-Pfaltz first
pass. However, in the new algorithm, during this
pass a minimal adjacency array is produced and
progressively updated during the pass.
Consequently, at the end of the pass, all adjacency
relations are known, and the segmentation is
complete. This segmentation algorithm was also
extended to include connectivity of gray-scale
regions.

In this paper a graph-theoretic algorithm is
described for segmentation of binary or gray-scale
images that is parallellizable. The algorithm is an

extension of Cohen’s One Pass Algorithm, but
involves further graph theoretic operations.

The algorithm has been implemented in C,  using
PVM [8], and experimental data is presented over a
local  network of SUN Workstations.

1  Kruskal Adjacency Table
The  standard graph-theoretic adjacency matrix  for
a graph has elements that indicate whether  the
corresponding vertices are connected. In the absence
of loops and multiple edge,

            if  Aij  = 0 Vi and Vj are not
connected
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    if  Aij  = 1 Vi and Vj are
connected

In developing his minimal spanning tree algorithm,
Kruskal [9][10] introduced what we call a Minimal
Adjacency Table, which is computationally more
useful way of representing connection relations. In a
minimal adjacency K each entry indicates the
smallest vertex  number to which vertex is
connected:

eg, if  K[j]  = [i]

then    i =<j, and i is the vertex of smallest numeric
label to which vertex  Vj is connected. Of course, if
K[i] =i, then i is not connected to any other vertex.
In Kruskal's minimum spanning tree algorithm,
edges are progressively added to a graph, and the K
table is updated for each addition..
In the algorithms discussed here, as adjacency is
determined of various regions,  the table is
progressively updated.

1.1 UPDATE ALGORITHM for Minimum
Adjacency Table
In Kruskal's minimum spanning tree algorithm, the
minimal adjacency table K is initialised with K[i] =I
for all vertices of a graph bare of edges, and edges
are progressively added. The Update Algorithm,
specifying the change in K when the edge
connecting Vi and Vj  is inserted, is:

 if   m = K[i] ;  n = K[j]
if m == n   do nothing(*)

else
 mmax = max (m,n) and

mmin = min (m,n).
for ( region =1; region <

region =< region_max; region ++)
if K[region] ==

mmax then K[region] = mmin
where the number of vertices is called region_max,
consistent with algorithm below.
(*) In minimum spanning tree algorithm, this edge
is not added to the edge list.
2  THE ONE PASS SEGMENTATION
ALGORITHM

The basic idea of the one-pass algorithm is to use a
graph whose vertices correspond to possibly
connected regions in an image. When two regions
are found to be connected, then  a edge is inserted in
the graph connecting the corresponding verticies.

Using E[i][j] to denote image pixels, and R[i][j] the
corresponding region labels the algorithm is as

follows: (the algorithm is written in sufficient
generality so as to include both the case of binary
images and gray-scale images. Pascal code
formulation was presented in [6].)

/*Initialisation */
no_of_regions =0;

/* raster scan through an image - pixels "outside" an
image treated as "background" pixels */

If  E[i][j] == BACKGROUND  R [i][j]  =
INFINITY

else
{
If  E[i][j]  is adjacent to both NORTH and

WEST pixels:
{
R[i][j]   = min { m =R[i-1] [j], n =

R[i][j+1]} /* Compare Rosenfeld-Pfaltz) */
/* Update Maximum Adjacency Table */

if  m != n   then
{
mmax = max (m,n) and

mmin = min (m,n)
for ( region =1; region <

region =< region_max; region ++)
if K[region] ==

mmax then K[region] = mmin
}

if  E[i][j] is adjacent ONLY to NORTH
R[i][j] = R[i-1][j]

if  E[I][J] is adjacent only to west
R[i][j]  = R[i][j-1]

if  E[i][j] has no adjacent pixel to west or
north

R[i][j]    =  ++ no_of_regions
}

At end of raster scan  all entries in region R have
been made, and minimal adjacency table K has been
finalised.
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3 THE PARALLEL SEGMENTATION
ALGORITHM

In this section, the new parallel algorithm for image
segmentation is described as an extension of the
single-image algorithm of the previous section.

Initialization stage of the parallel algorithm involves
splitting the image into regions with overlapping
common boundaries. -- the overlap being of one
pixel width, as indicated in Fig 1:

Fig 1. Image subdivision styles. To left, sub-images
with overlapping “horizontal”boundaries, as used in
experiment reported. To right, sub-division into
regions with both horizontal and vertical
boundaries.

Following this initialisation, sub-images are sent to
daughter processors to perform Step 1 of the new
algorithm.

Step 1 [Parallel Step]

The processor α performs the One Pass
Segmentation Algorithm for sub-region α to
determine a region label image R[α] and Minimal
Adjacency Table [α] and no_of_regions[α] for sub-
images.

Step 2
The sub-image label

The minimal Adjacency Table for each sub_image
is returned to the processor overlord.

Step 2 [ Graph-Theoretic Merge]

Reassign consecutive region numbers to table entries
in each minimal adjacency table.
The tables  now constitute a (partitioned) minimal
adjacency table for the whole image.
Scan through each overlap region: for if pixel p is in
sub-images  α and β,

then if K[α]  != K[ β] , update the table.

Segmentation is now complete. However, as an
optional further step, the relevant partitions of each
table can be sent to the corresponding processor, and

the region lables given the final form in the Region
label Images.

4  CONCLUSION

Fig 1:  Perceptron -II Image
The basic image is a 32x32 thumbnail. Experiments
have been performed with scaling via replication to
512x512. There are two connected regions plus
background in this image.
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Fig 1:  Perceptron -II Image  split into two sub-
images, with replication of the boundary line. Both
upper and lower sub-image have 6 connected
regions, plus background.

Data for 512x512 image is as follows:

No of
processors

Duration
of Parent

secs

Duration -child processors
secs

1 154.63 93.074
2 115.77 89.24, 65.62
3 90.49 60.66,65.38,58.48
4 81.51 60.32, 61.24,51.60,59.37

The speed-up is relatively modest for two reasons
(a) communication overhead
(b) the increasing LUT transfer and manipulation
required.

It is proposed to modify the algorithm, so that
Note that the size of the child process is steadily
decreasing, in the ratio 1: 0.5:

There is a trade-off effect -- as ultimately more
effort0.3

A parallel segmentation algorithm has been
developed, implemented, and tested for test images.
The only comparable algorithm known is the
parallel thinning algorithm of E. Trichina & A.
Kolesnikov [7]; for more than two sub-images, their
algorithm requires mutliple passes of Rosenfeld-
Pfaltz operators (both forward and backwards)  over
all the sub-images involved until convergence.

The real utility of this algorithm is its use in
convenient combination with the computation of the
additive properties of connected regions -- area, first
and second moments. - such as used in the well-
known SRI parameters. [11] [12]
4  IMPLEMENTATION
The implementaion was performed using a Single
Program Multiple Data programming model, using
PVM. PVM,  real utility of this algorithm is its use
in
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