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ABSTRACT 

This paper presents an approach to texture segmen -

tation by thresholding based on compactness measures of 

fuzzy sets to determine thresholds of an ill-defined image. 

The extension of fuzziness in the texture feature space pro-

vides more meaningful results than by considering fuzziness 

in gray scale domain. The effectiveness of the algorithm is 

demonstrated by comparison with other traditional non-

fuzzy methods or the controversial fuzzy method in gray 

scale alone. In addition, the efficiency of our algorith m 

is further improved by parallel implementation using dis-

tributed shared memory workstations. 

Key words: Texture segmentation, thresholding, fuzzy  

sets, fuzziness, fuzzy compactness, parallel implementation.  

1 .  INTRODUCTION  

An important component in image analysis is segmentation 

of the image into meaningful regions with certain proper -

ties. In computer vision, grouping parts of a generalized 

image into units that are homogeneous with respect to one 

or more characteristics (or features) results in a segmented 

image, which provides a fertile ground for vision theories 

to organize the scene into meaningful units as a signifi -

cant step towards image understanding. During the past 

decades, various image segmentation techniques have been 

proposed [1]. Segmentation algorithms generally are based 

on one of two basic concepts of discontinuity and similarity. 

In the first category, an image is partitioned, in terms of 

abrupt changes in image features, by boundary detection 

associated with the detection of isolated points, lines and 

edges in an image. In the second category, the principal ap-

proaches are based on feature thresholding and clustering, 

region growing, region splitting and merging. 

Thresholding is a technique extensively studied and widely 

used as a tool in image segmentation. The objective of his-

togram thresholding is to determine boundary value so as 

to partition the image space crisply into meaningful regions. 

A number of approaches to thresholding, including global, 

local and dynamic methods have been proposed in the past. 

However, when the regions in an image are ill-defined (i.e., 

fuzzy), some ideas based on fuzzy set have been proposed 

by assuming the segments to be fuzzy subsets of the im-

age. Fuzzy geometric properties defined by Rosenfeld [2] 

are useful for such analysis. Pal [3] proposed a method to 

extract the fuzzy segmented version of an ill-defined image by 

minimizing compactness and fuzziness of the image in both 

the intensity and spatial domain. The advantages of such an 

algorithm has been demonstrated by considering the 

ambiguity in grey level through the concepts of index of 

fuzziness[4], entropy [5] and index of nonfuzziness (crispness) 

[6]. Nevertheless, this method cannot be applied directly to 

textured image because texture is characterized by its local 

features over some neighborhood rather than a pixel gray 

scale. 

In this paper we extend the fuzzy compactness approach 

to segment textured images by incorporation of fuzziness in 

texture feature domain. Section 2 highlights two texture 

feature measurements — Skewness and Laws' texture en-

ergy. Section 3 introduces the fuzziness measurement in an 

image. The threshold selection procedure is described in 

Section 4 and the parallel implementation is summarized in 

Section 5. Finally the experimental results and conclusion 

are presented in Section 6 and Section 7. 

2.  TEXTURE FEATURE EXTRACTION  

The aim of feature extraction is to represent an image by a 

set of numerical "features" so as to remove redundancy from 

the data and reduce the feature dimension. Historically, 

structural and statistical approaches have been adopted for 

texture feature extraction[8]. The structural approach as-

sumes the texture is characterized by some primitives fol-

lowing a placement rule. In the statistical approach, tex-

ture is regarded as a sample from a probability distribution 

on the image space and defined by a stochastic model or 

characterized by a set of statistical features.  

In this paper our emphasis is on the so called 'spatial-

statistical' measurement of texture features, which involves 

the computation of statistics of various local image func-

tions. These measures are spatial because they depend 

upon local window functions rather than single pixels. They 

are statistical in the sense that statistical moments of an im-

age window are invariant to relative pixel positions. In our 

test, Skewness and Laws' texture energy are used as texture 

measurements[7]. Skewness is formulated as:  

SKW = E[(I(r,c) — AVE)
3
/VAR

3/2
] 

where AVE denotes mean of pixel gray levels and VAR 
refers to variance of the pixel gray level distribution.  

Laws introduced the notion of a single parameter, the 

local 'texture energy' as the measure of texture features in  
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the spatial domain. Basically his method consists of two 

steps. The first step involves convolving [7]the whole image 

by a zero sum mask. The two-dimensional convolution of 

the image I(i,j) and mask A(i, j) with size 2a +1 by 2a +1 

is given by the relation 

 
F(i, j) = A(i, j) * I (i, j) 

EL_a A(k,l)I(i + k, j +1), 
 

 

 the (signed) image F(i, j) has mean zero over a significantly 

large region of uniform texture. In most cases the size of the 

mask A(i, j) is 5 * 5. The convolution masks are intended to 

be sensitive to visual structure such as edges, ripples, and 

spots. 

The second step involves determining the difference be-

tween the convolved image F(i, j) and the real image I(i, j). 
For a zero-sum mask, the local texture measures are deter-

mined as statistical variances of the filtered image by com-

puting the squared signal values in the filtered image. From 

the computational efficiency point of view, the sample mean 

deviation of the filtered image, called ABSAVE, is intro-

duced as the most useful statistics by Laws. The ABSAVE 
E(i, j) is defined as the mean deviation within a 2n + 1 by 

2n + 1 window at point (i, j) and is given by 
 

 

 

 

 

 

which Laws called texture energy measure, which is used in  
 
which Laws called texture energy measure which is used in 
his test as the texture feature.  

In the experiments reported here both Skewness and 

Laws' texture energy measures are used to determine the 

fuzziness in a texture feature image. The measures of fuzzi-

ness in such a feature image and the selection of threshold 

by minimizing fuzziness are detailed in next section. 

3.  FUZZINESS MEASUREMENT 

Fuzzy sets were first introduced by Lotfi Zadeh [9] as a 

new way to represent vagueness in everyday life. Fuzzy in-

terpretations of data structures in computational pattern 

recognition have been proved successful because they pro-

vide a very natural and intuitively plausible way to formu-

late and solve various problems. An image I of size M * N 
and L levels of brightness can be considered as an array of 

fuzzy singletons, where each associates a value of member-

ship representing its degree of brightness relative to some 

brightness level 1,1 = 0, 1, 2, ..., L 1. Such an assumption 

can be expressed in the notation of fuzzy sets as below:  

 

 

 

 

 

In his previous work, Pal[3] introduced the index of 

fuzziness to reflect the average amount of ambiguity (fuzzi-

ness) present in an image I by measuring the distance be-

tween its fuzzy property x and the nearest two-level prop-

erty X. A linear index of fuzziness is defined below:  

 

 

 

where x(x i j)  denotes the nearest two-level version of X 

such that 

x(x i j)  =  0  i f  x(x i j)  <  0.5  
                            =  1  o therwi se .  

In contrast to the conventional measurement of fuzzi-

ness in an gray scale image detailed above, we extended this 

approach by applying the distance measurement to texture 

feature image rather than the texture image in gray scale. 

Accordingly, X refers to the texture feature set and xi, 

represents the certain texture feature measurement. In the 

work reported here, both Skewness and Law's texture en-

ergy are calculated and mapped to different levels for the 

measure of index of fuzziness in the feature domain. 

4. THRESHOLD SELECTION 

There are a number of threshold selection schemes for seg-
menting an image which include global, local and dynamic 
methods. In general, a threshold operator can be viewed as 
an operation that involves tests against a function T of the 
form 

T = T(i, j, N(i, j), I(i, j)) 

where I(i, j) is the gray level of point ( i, j) and N(i, j) de-

notes some local property of the point ( i, j) such as the aver-

age gray level of a neighborhood centered at (i, j). For each 

point (i, j) in the image I(i, j), if I(i, j) > T(i, j, N(i, j), I(i, j)) 
then (i, j) is labeled as an object point; otherwise, (i, j) is 

labeled as a background point. 

When an image is regarded as a fuzzy set as detailed 

in Section 3, an optimal threshold value can be determined 

by minimizing fuzziness, e.g Vi(X). Based on the equation 

given in Section 3, it is seen that a proper selection of the 

cross-over point, i.e., the 0.5 value of Xx, will result in a 

minimum value of v(X) which corresponds to the appropri-

ate boundary between regions in X. Instead of processing 

the gray scale image, we consider the minimization of fuzzi-

ness in texture feature to select appropriate threshold value 

for segmentation. Such an algorithm is summarized as fol-

lows: 

 Step 1: Convert the gray scale texture image to tex-

ture feature image by means of skewness or Laws' tex-

ture energy measurement. The maximum and mini-

mum values are lmax and lmin. 

 Step 2: Construct the "feature image" membership 

x , where 

x  (l) = S(1; a, c), lmin < l,li < lmax 

and\ 

 

S( l; a, b, c) = 0 1 < a, 

= 2[ (1—  a) / ( c  —  a)r ,  a  < 1 <  b,  

= 1 — 2[(1— c)/(c — a)? , b < I < c, 

=  1      

> c  
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For the purpose of fuzzy segmentation of the textured 

image, the cross-over point of px (smn which having mini-

mum ambiguity is considered as the threshold value in tex-

ture feature image to identify regions.  

5. PARALLEL IMPLEMENTATION  

In contrast to the conventional parallel implementation where 

either the dedicated hardware or the software are required, 

our optimization of fuzziness for textured image segmenta-

tion is implemented in parallel using a workstation cluster. 

We adopt a divide-and-conquer policy, where a complex 

task is divided into a number of sub-tasks and those sub-

tasks are mapped to computers for simultaneous implemen-

tation. In order to reduce the communication overheads, we 

conduct our experiment of parallel computing on networks 

of workstations using the TreadMarks distributed shared 

memory (DSM) system. 

TreadMarks is a useful software which turns an exist -

ing network of workstations into a powerful shared-memory 

parallel computer for high performance. Based on the work-

station's unmodified Unix operating system and standard 

compilers, TreadMarks creates a parallel programming en-

vironment that makes parallel computing convenient, inex-

pensive and efficient. In this section, we discuss our expe-

rience with parallel implementation of texture feature ex-

traction and optimization of fuzziness on a network of work-

stations using the TreadMarks distributed shared memory 

(DSM) system. where the software provides facilities for 

process creation and destruction, synchronization, and shared 

memory allocation. The TreadMarks DSM system intro-

duces lazy release consistency and multiple writer protocols 

to make sure that the shared memory abstraction does not 

result in a large amount of communication.  

6. EXPERIMENTS  

It has been confirmed that optimization of fuzziness in gray 

scale image provided a better solution to histogram thresh-

olding for image segmentation[6]. We extend such an ap-

proach by introducing fuzziness to texture feature domain 

and partition the textured image into meaningful regions by 

thresholding. Figure 1 shows the comparison of histogram 

thresholding of a textured image. Our test results will show 

that the histogram of texture feature distribution (em e.g., 

texture energy proves the potential use of simple threshold-

ing in textured image segmentation.  

The advantages and potentials of a general distributed 

shared memory system for parallel image processing is fur-

ther demonstrated by the performance comparison listed in 

Table 1, where different numbers of processes were invoked 

by means of both PVM and DSM on the 512*512 size im-

age. The parallel performance improvement is measured by 

the following ratio: 

                                
where TS refers to the sequential execution time and TP, 

refers to the parallel execution time. It is clear that DSM in-

crease the speed better due to its less communication over-

heads. It is expected that the overall performance will be 

further improved by introducing dynamic task scheduling 

for parallelism. 

7 .  C O N C L U S I O N  

We conclude that the extended thresholding scheme by op-

timization of fuzziness provides more meaningful results for 

textured image segmentation. In addition, the parallel com-

puting on networks of workstations using distributed shared 

memory is powerful to attain real-time performance. Our 

investigation shows that distributed shared memory com-

puting can meet the high computational and memory access 

demands in real-time imaging. 
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Figure 1: (a) Texture image; (b), (c) Histogram  

Table 1: The performance comparison of DSM and PVM 

 
number of 

processes 

execution time  

(DSM) 

execution time  

(PVM) 

1 1.45 sec. 1.77 sec. 

2 0.80 sec. 1.41 sec. 

4 0.52 sec. 1.17 sec. 

8 0.48 sec. 1.13 sec. 

16 0.22 sec. 0.27 sec. 

32 0.12 sec. 0.27 sec. 

 


