
Random Search Methods Speed Up Object Recognition  
 

 

Harvey A Cohen 

School of Computer Science and Computer Engineering 

La Trobe University Bundoora 3083Australia 
Alan L Harvey 

Electrical Engineering Department 

RMIT Melbourne 3000 Australia 

 

 
 

 
Abstract   
Random search methods are long established mathematical techniques for multivariate optimization, and have been 

applied to such optimization tasks as the training of neural nets, but are not an established method in image analysis. In 

this paper we present a new approach to the problem of object location within an image, with mismatch function 

determined via a template, by regarding this task, as an optimization problem and applying a random search method 

based on the Matyas algorithm. This elaboration of the Matyas algorithm, called random cluster search, involves a 

simple pattern search about random image locations. The paper reports experiments in which random cluster search 

was compared with both conventional exhaustive search and sparse data based fast search methods. Speed-ups as much 

as 40% compared to the most efficient deterministic search strategies were recorded in situations where a single sought 

object was located in. the image. 

 

1.  Introduction 
The recognition and location of an object within an 

image has long been a central task of computer vision. In 

machine vision object recognition is vital to robotic 

assembly, and is an essential element of automated 

surveillance. With the recent emergence of massive 

image databases requiring automated means of 

classification, the recognition of objects within an image 

will play a significant role. Thus improvements to 

classical methods of object recognition and location 

remain of interest. 

 

The key idea of this paper is to treat the problem of 

object recognition using templates as an optimization 

task using a well-established method of numerical 

analysis, random search that has not been previously 

applied to this problem. The optimization task is the 

location of the minima of the template image match 

function evaluated at all datapoint locations within an 

image, that is, at all pixel locations. 

 

In random search algorithms for multivariate 

optimization, some, not necessarily all, co-ordinates of 

search locations are randomly generated. Random or 

stochastic search methods are an established method of 

numerical optimisation, [2][3][7] and have been used for 

a wide class of minimisation problems. These 

optimization methods of numerical analysis have been 

found to have significant advantages when the objective 

function is difficult to compute or a global minimum is 

required in the presence of many local minima. [8] 

Random search methods have been used in the training of 

neural nets, and were shown by Baba to be much faster 

than the gradient descent. Benke [22] and Cohen and 

You [23] have used random search in the “tuning” of 5x5 

convolution masks to meet objective functions. However 

random search has not previously been applied to object 

location. 

 

. Random search algorithms were written in order to 

investigate firstly the applicability of these methods and 

secondly their effectiveness in terms of computational 

cost. Important search variables were the number of short 

range calculated searches relative to the number of 

random searches and the range of the random step in the 

calculated steps. After a series of investigations it was 

found that for a given template size, a strategy defined 

below termed a guided cluster search of appropriate scale 

converged after less iterations than a systematic sparse 

grid search. A 100x100 Pebbles image from Brodatz was 

used for the investigation to give spatially constant image 

properties, particularly texture or the auto correlation 

function  

In this object recognition study, objects were located 

within an image by finding the point of minimal object 

template mismatch after a series of studies carefully 

established the correct range for the local search referred 

to here as a cluster search. The random search strategy 

used consisted of an objective function evaluation at a 

randomly generated image location followed by several 

function evaluations at a short distance from the point of 

best match so far. In this application the point of best 

match means the image point where the mismatch 

function is lowest so far. The ratio of random searches to 

local searches and the method of selection of the local 

search incremental steps are of fundamental importance 

to finding the global minimum for template mismatch in a 

minimal number of search steps. The efficiency of 
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various strategies was compared in terms of the average 

number of searches to find the object.  
 

1. Random Search Review 
In the search for a data item at an unknown location, 

there is a basic distinction between deterministic and 

random search methods. In a deterministic search, 

indicative signs of near match may be used to modify the 

pattern of search. For example, in most coarse-fine 

deterministic search strategies, indications of near-match 

are use to switch from the coarse search pattern to the 

fine one. In random search, although the basic pattern of 

search is random, here, too,  the parameters of search 

may be modified by indications of near-match. In the 

work described here a regular pattern of search is 

performed about a randomly determined location.  

 

This section provides an overview of random search, 

following closely the formulation of Solis and Wets, then 

presents a new random search algorithm that is an 

extension of the Matyas random search algorithm. This 

modified algorithm, called the cluster algorithm, includes 

Matyas as a special case. 

 

It is important to note that in any search algorithm, 

random or deterministic, the location of the next location 

to be examined is a function of the location of the current 

search location, the results obtained there, together with 

some the results of immediate search algorithm. Hence a 

search algorithm is specified well in terms of the step, 

and its direction, from the current location to the next 

position to be examined. 

 

 
Before turning to what is called in this paper and 

elsewhere random search, it is useful to consider n an 

exhaustive search, all entirely random search, what could 

be called a "pure”random search, random search 

locations are generated and the objective function is 

evaluated. No data is retained regarding image locations 

for previous searches. For a purely random search in a 

NxN image, the required number of searches will not 

change with the object position. A truly random search 

can be expected to take N2 searches on average. In 

practise, a purely random search would not be used. In 

practical random search methods, search positions need 

to be biased towards areas of low mismatch in order to 

find the optimum position more quickly.  

 

1.1 The Matyas Algorithm       

The classic random search algorithm for multivariate 

optimization is that of Matyas [8]. In the Matyas 

algorithm, a Gaussian random step from the previous best 

position is taken and the matching function evaluated. If 

the match is better at the new coordinates, this position is 

adopted. Otherwise the next random step is taken from 

the old x,y position.  

In mathematical terms we have the following, where we 

formulate for the case of multivariate minimization of a 

function f of the vectorial quantity x: 

An initial value of the coordinate vector x0 is chosen and 

f(x) evaluated for search number k = 0. 

For search k>0 

Generate a Gaussian Random vector   

Check  that    xk+  X .is  within the search space X.. 

 If so, calculate f(xk+).  

 If  f(xk+) < f(xk, then xk+1 = xk+ 

Continue until f(x) is less than a threshold value or k is 

equal to the maximum search number M.  

 

Baba and Solis and Wets [1]-[11] have given proofs of 

convergence for random search methods. They stipulate 

various conditions for the search method. These 

conditions are easily satisfied in practice. The basic 

condition these proofs use is that the best so far is 

selected. Formally, if x
k
 is the best so far at iteration k, 

and 
k 

 is a new estimate in iteration k, then the value to 

be selected is given by the function L(x
k
,  

k
), satisfying: 

   L(x
k
,  

k
) = 

k
 , if f(x

k
)  > f(

k
)

 
 

    = x
k  

otherwise
 

 

Note that x
k
 and 

k
 are vectors; in this case of object 

location in conventional 2D images they are 2D vectors. 

 

These proofs, subject to credible conditions, state that 

there is zero probability of repeatedly missing the point 

of minimum provided enough searches are made. Of 

greater practical significance is how many searches need 

to be made to be reasonably certain of obtaining the 

global minimum? This can be estimated in the case of a 

2D function from the ratio of the area of convergence to 

the area of the search space. This point is discussed more 

fully in the following sections. 

Solis and Wets [11] improved the convergence of the 

Matyas random search by adding a second search step at 

the "mirror image" of the random search location  at 

x(k)-. If the search step at x(k)+ does not reduce f(x) 

then compare with  x(k)- and accept this position if  f(x) 

is less at that position. Solis and Wets also calculate a 

bias vector b around which the random vector is 

generated.  b(k+1) = 0.4. + 0.2b(k) 

If the reflected step gives a better result  then  b(k+1) = 

0.4. - 0.2b(k) 

 

 

 

1.2 Simulated Annealing 

In the Matyas search algorithm detailed above, the search 

proceeds via the "best-so_far" location invariably. In 

contrast, there are a range of stochastic search algorithms 
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based on thermodynamic analogies where the search 

proceeds according to an inherently more complex 

algorithm. The earliest such papers by Metropolis et al 

[9] introduced what is now termed "simulated annealing". 

[10][13] 

 

The basis of simulated algorithm is as follows: 

 At search point x
k
 a random step  is generated. 

The random step is accepted if  f() < f (x
k
) .  

However if  f() > f (xk) still accept   with probability:  

p =  exp{-(f()- f(x(k))/Tk}. Thus as the value of f(x) 

decreases, the probability of acceptance of the random  

step also decreases. The temperature Tk is reduced 

during the search causing the acceptance probability to 

decrease also. 

Recently Bilbro et al [23] showed that simulated 

annealing was serviceable in the global optimization of 

functions with many minima. 

 

1.3 Guided Random Search 

In the study reported here a new version of random 

search is introduced, called guided random search, that 

generalises the Matyas Algorithm. The key idea for this 

modification is to select a new search location at random, 

evaluate the mismatch function at this new location, then 

search at computed locations about the best so far 

location. 

Xr

Xb

Xco

Xc2

Xc1

Xc3

 
Figure 2 Guided Random Search  

Locations of search locations about the best-so-far.

            

In the new algorithm the computed search locations are 

clustered about the best-so-far location. Two points 

(pixels) on the cluster are on the line between the best-so-

far and the previous best-so-far, and both at the same 

distance from the best-so-far, exactly as for Solis and 

Wets version of Matyas algorithm; but there are a further 

two search locations at the same distance from the best-

so-far, on a line perpendicular to the same line. See Fig 2, 

above. To simplify programming, the Gaussian search 

probability used by Matyas has been replaced by simple 

uniform distribution (see below). 

2 - Search Strategies               

The purpose of this section is to outline the search 

methods which are used in an experimental study 

comparing  XXX with what can be considered state of 

the art conventional approaches to object location via the 

use of templates. The algorithm discussed is as follows: 

1.  Sequential Search 

2.  Sparse/Fine Sequential Search 

3.  Purely Random Search 

4.  Convergent Random Search 

These are detailed in the following sub-sections. 
 

2.1 Sequential Search  
For a NxN region, the area is searched point by point 

giving a maximum number of  N
2
 search points. For a 

sequential or exhaustive search, the number of searches 

to find the object will vary with the object position. 

Taking the average  position as the centre, the average 

number of searches will be N2/2. For an object template 

of size TxT pixels, there are actually (N-T+1)2 search 

positions for the full image but for small templates, N2 

points is a close approximation.  

 

2.2 Sparse/Fine Sequential Search 
The sparse/fine search methodology consists of searches 

at a sparse set of image locations in a raster pattern 

switching to a fine search at all locations if the mismatch 

starts to converge. In other words, a purely sequential 

search can be speeded up by using a sparse set of points 

providing the mismatch error is monitored well enough 

not to miss the correct match. For a  NxN image, with an 

8 pixel step,  the number of sparse grid searches will be 

N2/8   for a line by line sequential search. This does not 

include the number of fine steps taken when the 

mismatch error indicates that the error is reducing 

significantly and fine steps of one pixel must be taken. 

Studies show that the overall average step  will be equal 

to the coarse or sparse step less one, a sparse step of 8 for 

example producing an average step of seven when the 

fine steps are included. 

  

2.3 Purely Random Search            
In an entirely random search, random search locations are 

generated and the objective function is evaluated. No 

data is retained regarding image locations for previous 

searches. For a purely random search in a NxN image, 

the required number of searches will not change with the 

object position. A truly random search can be expected to 

take N2 searches on average. In practise, a purely random 

search would not be used. In practical random search 

methods, search positions need to be  biased towards 

areas of low mismatch in order  to find the optimum 

position more quickly.  
 

2.4  Convergent Random Search  
In a convergent random search, random steps are 

followed by local searches around the best result so far. 

For a local mismatch area of A pixels in a NxN region, 

the expected number of random searches required is 

N.N/A from a first principles approach before the search 
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will start to converge. The total number of searches will 

then be the above plus the number of local searches, to 

converge on the object. Search types vary from random 

increment local searches with fixed relative locations to 

random direction searches with a fixed radius from the 

last best position. The size of the step must be 

comparable  to the size of the mismatch region, which 

depending on template size and configuration, is of the 

order of  5-15 pixels in width.  

 

For the 2D image matching problem, the problem 

formulation is as follows: [11] Given a function f of 

dimension  R2 , and a  search region S which is a subset 

of R2, we seek a point x in S which minimises f(x), or at 

least gives a close approximation to the minimum for the 

mismatch function of  f  on S.  

The Algorithm given therein is as follows: 

    Step 0.  Find x(0) in S and set k = 0. (K is the search 

counter.) 

    Step 1.  Generate Ek from sample space (Rn, B, uk).    

    Step 2.  Set x(k+1) = D(x(k),Ek), choose u(k+1),  set 

k=k+1. Goto 1. 

uk is a probability variable related to  biasing the search 

to regions of low error. 

 

The map D with domain S x Rn and range S satisfies the 

following condition: 

       f(D(x,E))  f(x) and if  E  S, f(D(x,E))  f(E). 

 

uk is a probability measure corresponding to distance 

function defined on R2.  

By Mk we denote support of uk ie Mk is the smallest 

subset of R2 of measure 1. 

 

To converge, random search methods must be adaptive, 

ie uk depends on certain quantities, in particular the value 

of the objective function at x0,x1,...x(k-1) generated by 

preceding iterations. uk is regarded as a conditional 

probability measure.  

 

2.4.1  Random Search Termination 
Some information on the matching function is required to 

determine a reasonable figure for the total number of 

searches in order to terminate the search (a) if the object 

is present or (b) if the object is not present. If the size of 

the mismatch region is known, an estimate of the most 

probable number of searches may be made and the 

maximum search number can be set to say four or five 

times this figure for a failure criterion. Alternatively an 

acceptable threshold for the mismatch function may be 

used as a termination criterion for success.     

 

2.4.2 Final Search Speed  Up 
When the search is within the convergence region of the 

correct  match point, a large number of methods may be 

used to find the best point of match as quickly as 

possible. Some methods require function evaluations 

only, others require gradient calculations to indicate the 

direction of maximum gradient descent. For searches 

with a large search space a very small amount of time 

will be spent on finding the minimum as distinct from 

finding the region where the point of match is. Thus the 

overall gain in reducing search time by using elaborate 

"hill climbing" or descent methods for object recognition 

is unlikely to be very significant. A method that can 

quickly dismiss an area as unproductive will be of greater 

benefit. 

 

RANDOM  SEARCH  STRATEGIES.  

For a search area of considerable size where it is 

reasonable to look for ways to avoid an exhaustive search 

of all locations, a random search will eventually succeed 

and as long as there is a finite correlation area the search 

can be terminated relatively early assuming the method 

converges reasonably once the mismatch dip is found. 

This is the same criterion as the sparse search using an 

adaptive step size requires for it's success in reducing x,y 

calculation points.[6] If the number of calculation points 

is still large, meaning the maximum coarse step is small 

but the area is large, a random search may reduce the 

number of  x,y calculation points but the burden of 

finding the point of minimum error from local error 

measure calculations must be low to make the method 

competitive. 

 

A cross search, is one in which searches are carried out 

in a cross shaped pattern and then the search is relocated 

at the location of the best result. Then value of w, the 

step size is then halved and another cross search  

performed.[5] Such a search, even if aborted after one 

cross search due to lack of convergence requires five 

calculations at  locations, at  w in the x and y directions 

and one at the original random location. A cross search 

must be  made at each randomly generated x,y location as 

a minimum is equally likely in any particular location. 

Thus a random search using a local cross search must be 

at least 5 times as efficient as an ordered sparse step x,y 

raster scan search to give comparable performance. Other 

local search strategies, such as the simplex method, 

require only  three points, so that potentially it  can give a 

reduced search  overhead over the cross search method. 
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Figure1  Mismatch  Function Plot, Inverted. 

 

SPARSE  TEMPLATE  CALCULATION 

The mismatch calculation  at each location may be 

reduced by using a sparse grid of  template points by 

taking, for example every second x,y template sample. 

This reduces the mismatch calculations by a factor of  

four at each image location. Other reduction methods 

may be used, for example taking every second complete 

row or column. Alternatively, one line and one row in the 

form of a cross may be used. For greater precision, a 

switch to a full template may be used when warranted, for 

example if the mismatch drops to a very low value. For 

very noisy data, full  templates must be used to give 

greater discrimination.. 

 

PURELY RANDOM SEARCH RESULTS 

As the limiting case of a random search, a set of searches  

was made at  purely random row and column co-

ordinates. The row and column random co-ordinates were 

0-99 for a 100x100 pixel textured image with the 

template taken at location 50,50.  The average number of 

searches was 8,501 with a standard deviation of 9001 for 

a  12/5  pixel  sparse  template at an average time of 3.24 

seconds averaged over 10 data sets.  

The method is comparable with an  exhaustive search at 

10,000 locations. Search numbers varied wildly from 

2,121 to 25,604 due clearly to the fact that no attempt 

was made to obtain convergence. Note that 25,604 

searches is about five times the number of search 

positions required by a  sequential, exhaustive search 

terminated at position 50,50. By keeping the template 

small, the time per search is not large but the number of 

searches required is excessive. Note that there is nothing 

to stop search coordinates being duplicated. Also without 

any local searches being made, search results close to a 

match will be ignored. 

 

Random   Versus  Calculated  Step  Search  Strategies 

The following discussion is for flat distribution random 

search steps rather than the Gaussian search steps  used 

by Matyas and Solis and Wets.  In random search 

techniques, searches are made at coordinates  that are 

purely random, ie have no connection whatever with 

previous search results or other steps which are  made 

close to the previous best match in order to find the 

minimum close to the point of best match found so far. 

The number of calculated local searches per random  

search  to find the point of best match is of considerable 

interest. The following results show the effect of varying 

the number of calculated steps from 1 per random search 

to 4 calculated steps per random search step.  

See the diagram below for search  location positions.  

 

 Xr

Xb

Xco

Xc2

Xc1

Xc3

   
Figure 2 Random Search Locations.             

 

In the diagram, Xb is the point of best match so far and 

Xr is a purely random image location. A computed step is 

then taken which is position Xco on the Xb-Xr line. 

Further function evaluations can be made at the reflection 

of Xco at Xc1 and at right angles to the Xb-Xr line 

giving image locations Xc2 and Xc3. Note that the 

calculated step size varies with Xr, so the "radius" of the 

cluster search around Xb varies. 

 

 Xc =  Xb + (Xr-Xb)./100 

In the above equation, the calculated step Xc is equal to  

the best  so  far  location plus a fraction /100 of the 

distance between the latest random location and the best 

so far location. The following figures are for a 100x100 

section of  the 256x256 pixel image pebbles. Template 

was located at image row, column of 30, 30. A 12 x 12 

pixel template with a sparse grid of 5x5 pixels (12/5 

template) gave the following results: 

 

One calculated step Xco  Best of Xb, Xco and Xr 

retained.  

No of     Avg Search      STD           Time 

Successes    secs. 

17 5764  6099  2.63 

34 2780  2631  1.20  

20 4537  3592  2.06 

Two calculated steps Xco,Xc1   Best of Xb, Xc's & Xr is 

retained. 

No of   Avg Search No     Std Dev'n            Time  

Successes              secs. 

83 1202  1060                      0.58 

68 1446  1195               0.71 

80 1244  1146               0.56 

 

Three calculated steps Xco, Xc1,Xc2  Best of Xb, Xc's & 

Xr retained. 

No of    Avg Search No  Standard Dev'n  Time successes

    secs. 

93  1064 1015  0.68 

75  1311 1156  0.58 

 

Four calculated steps Xc0,Xc1,Xc2,Xc3 Best of Xb, Xc's 

& Xr retained. 
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No of  successes  Average Search  No  Standard 

Deviation    Time secs. 

89  1114 1000  0.52 

86  1127 944  0.47 

96  1015 948  0.45 

It is clear from these results that the two or more 

calculated step searches are superior to the one step 

search and that three calculated steps did, on one run, 

give a slightly better result than the two calculated step 

search. 

 

Random  Search Calculated Step Size 

Considerations 
The size of the step from the location of the best so far 

match position depends largely  on the characteristic 

scale of the mismatch  function. If the function  slowly  

moves to  a minimum, the scale and hence step size will 

be large compared with a function that rapidly drops to a 

minimum over a few pixels. An investigation of the step 

size for a 12/5 sparse template for two calculated steps is 

as follows:  Image pebbles  Row, column location of 30. 

 

Data used to evaluate calculated step size for fastest 

guided random search convergence 

 

Step   No finds  Avg search   Std Dev'n Time 

3/100 23 4314 4199    1.68s 

5/100 80 1244 1146     0.56s 

6/100 114   876   779     0.46s 

7/100 113   881   759      0.39s 

8/100 90 1098   794 0.48s 

10/100 51 1958 2063 0.80s 

20/100 22 4376 3579 1.68s 

50/100 10 9841    12447 3.58s 

 

Very clearly step fractions between 5/100 and 8/100 give 

good results with 7/100 giving the best results with this 

12/5 sparse template for the two calculated step search 

strategy. At a fraction of 50/100 the result is essentially 

the random search result, namely NxN or 10,000 

locations in this case for a 100x100 image search space. 

 

The evaluation of the optimum value of the computed 

step ratio, ie the ratio of the distance Xb-Xc to the 

distance Xb-Xr shown above was done for computed 

steps Xc and Xc1, the reflected step. In other words how 

close should the short range steps be to the point of best 

match so far to give maximum speed of convergence? 

The previous table shows the results of this study. 

 

Random  Search  Template  Size Effect 
As the template size of the image object  increases, the 

mismatch dip size increases and therefore the probability 

of finding the object also increases. However for a full 

template, the calculation load will  increase as the square 

of the template size so a small number of template pixels 

is desirable since the template mismatch  burden is large 

since it is calculated at every search location. By using a 

sparse template, in which we take a sub sample of pixels 

from the template, studies showed that a larger mismatch 

region for a given number of pixels is available.  This 

result is very important as it applies to all search methods 

and gives a very significant reduction in search times. 

The following results are for the pebbles image with two 

calculated steps, a search multiplier alpha of 7/100 and a 

correct template position at row and column 30. 

 

Results  Sparse  Template  Size 

#of Loc'ns  Avg. Search Std Dev'n Time Template 

14 6028           4145              2.64         3x3/1 

99 1006            829              0.47     12x12/5 

 

Since alpha is reduced for the smaller template, a fairer 

comparison is with  an appropriate value of alpha. For 

alpha reduced to 4, and a 3x3 dense template, results 

were as follows 

 

18 5211 4459 2.16 3x3/1 

24 3791 3843 1.54 3x3/1 

 

Clearly, even though the success rate increased with 

alpha reduced appropriately, while the number of 

successes has increased, there is still a dramatic reduction 

from 1.54 seconds to 0.47 seconds due to the sparse grid, 

namely  the pixels distributed on a 5x5 grid rather than a 

1x1 spacing, 3x3 template. Note that there is the same 

number of pixels in each template,  3x3=9 pixels and  

integer 12/5 ie 0,5 and 10 giving a 3x3, 9 pixel sparse 

template also. 

Other templates using vertical and/or horizontal lines of 

pixels are also possible. 

 

 

1.3  Fixed Step Cluster Search             
As an alternative to the cluster search step size varying 

with Xr and Xb, the step size  K may be fixed and the 

direction of the cluster step only varies with Xr 

               Xc =  Xb + K 

where all symbols are as discussed and K is the step size. 

The vector K is varied in direction in the same way as the 

varying step cluster search. This methodology  also 

converges quickly if K is chosen well. 

 For 3 calculated steps: Image Pebbles 

                K # Searches  

   2    3,753 

  3       986 

  4     1755 

 

3.4 Concentric Square Search 

An ordered square search strategy was developed  by 

searching in a square pattern and then increasing the size 

of the square until the image area is covered. The search 



7 

 

starts at the centre of the image and ends when a square 

equal to the image size is searched. The square search 

may be speeded up by essentially the same methods as 

the ordered "raster scan" search where the search starts 

proceeds row by row from the top left corner and finishes 

at the bottom left corner. These speed up methods are a 

sparse/fine search of the sides of the squares and a system 

where squares are skipped over  if the previous search 

square shows no sign of a match. Sparse templates were 

used to reduce matching calculations at each search 

point.  

 

In the square search variation, the mismatch function is 

evaluated in a consecutive manner at points on the edge 

of a square starting in the centre. In the sparse/fine  

square search, the mismatch function is evaluated at 

sparse locations spaced at 4 to 10 pixels depending on 

the template size. If the mismatch sum starts to drop, a 

fine search at steps of one pixel is made. The square 

search has the advantage of having the lowest average 

distance from any point since it starts from the centre.  

 

Results for a concentric square search for the pebbles 

image are shown in the following tables 

 

 

RESULTS  CONCENTRIC  SQUARE  SEARCH 

Forward Search   Square spacing  = 1,  or all squares. 

 

  Template    Step    No Searches  Time sec.      col/row 

    12/5           1            9609            2.26                1  

                      2            4901            1.18                1   

                      3            3361            0.88                1  

                      4            2497            0.66                1 

 

     24/5           1           9609           4.40                 1 

                       2           4901           2.45                 1 

                       3           3367           1.67                 1  

                       4           2513           1.33                 1 

 

Above results are for contiguous squares, ie  no  sparse 

searches on squares 

By keeping a check on the minimum sum for each square,  

and comparing it with the previous square's minimum, an 

increment above the minimum may be made without 

missing the point of match. For the 12/5 template, this 

was not possible but with the larger template 24/5, the 

following results were obtained: : 

 

 

 

Sparse Step # Searches Time sec. Col/row Square 

Template                                                           Incr't 

  24/5      1           6270             2.83s               1       4 

pixels     2           3360              1.78                1       " 

               3          2370              1.32                1       "  

               4          1591              0.93                1       "  

               5          1377              0.83                1       " 

               6          1104              0.72                1       " 

               7            Fail  

 

It is apparent that the square search is not inherently 

faster than the raster scan search but it has the advantage 

of  a lower average distance to reach a random position 

on the image.  

 

A graphical interface was used to check the shape of the 

concentric square search and to check the effect of 

coding changes. 

 

 

3.5 Raster -ordered Search Comparison 
Ordered searches were made with the following 

variations: 

1. Forward Sparse/Fine Column Steps. 

2. Forward and Reverse Sparse/Fine Column Steps. 

rowstep = 1. 

3. Above Column options plus sparse/fine row steps. 

Forward Sparse/Fine Column Steps. 

A forward search using sparse  column steps step sizes in 

the range four to eight  were made.  The maximum 

successful step depends on template size and sparseness. 

Results are as follows for search times and numbers of 

searches for the image pebbles: 

 

Forward Search Rowstep = 1       Program  blokrow.c 

 Template  Step  No Searches Time sec.    col/row 

    12/5        4          2056               0.44s              49 

     5           1742               0.38                 "  

     6           Fail                                        "   

 

 Template     Step  No Searches   Time sec.  col/row 

     24/5         4              1995            0.94              49 

       5              1658           0.80               49 

 Rowstep=1 

        6             1431              0.69            49 

        7             1251              0.61            49 

        8             1140              0.52            49 

Search averages  start point varied  as above to stop 

accidental matches. 

2. Forward and Reverse  Sparse/Fine column steps.   row 

step = 1  bloksize.c 

Template  Step   # Searches  Time sec. col/row   

    12/5          4       5655                  1.51                49    

                     5       4764                  1.26                49      

                     6        4122                 1.12                49 

                     7         Fail 

3. Forward and Reverse Sparse/Fine Column  and Row 

Steps   

For the small 12/5 template, with row steps greater than 

one, the  search failed to locate the template. 

All  Results are averages of two searches.   



8 

 

 

 Template        4      2299          1.57             49         4 

       24/5         5      1926          1.29              49        4 

                       6     1616          1.07              49        4 

                       7      1336       0.88                49        4 

                       8       Fail 

 

3.5 Binary Template Random Search  

 
Random search strategies were also evaluated using 

binary templates and images instead of grey level data. 

Binary data is important as many object recognition 

systems, especially character recognition systems, 

binarise the data to remove brightness variations. 

Random search strategies were successful  with binary 

templates but it was found that  3x3 contiguous templates 

or smaller (non-sparse), could not be used  as a  match 

was found at other than the correct position of the 

template. This is to be expected for binary  templates 

since the binarisation process throws away all but the 

most basic shape information. Larger templates or sparse 

templates were more  successful although a single pixel 

error from the correct location occasionally occurred. 

Also searches did not converge as quickly as grey scale 

templates. Searches required two to three times more 

searches to converge on the correct location due to the 

smaller correlation region.  The  search mismatch dip is 

less than half the width in most cases. For the same 

template and image, the following results were found: 

 

Image peb256, Template 31/5   [  ie 30x30 with a pixel 

spacing of 5x5, Sparse Pixels 49, 100x100 space]. 

 

 

Binary, Grayscale Template Search Time Comparison for 

Various Match Positions. 

 

Data X,Y Position  Time          # Searches 

Bin   30 0.73s 858 

Grey   " 0.35 412 

Bin   50 0.41 479 

Grey   " 0.19 223 

Bin   70 1.24 1443 

Grey   " 0.40 456 

 

 

3.6 Binary Images 

A random search followed by two local searches was the 

strategy used in this investigation as it worked well for 

the grey scale data.  The calculated step size was varied 

in order to speed up the convergence.  

The following results were obtained. Note that the step is 

actually the percentage step of the random search minus 

the calculated search. 

 

Clearly there is a  minimum at around 12 pixels although 

the minimum  is not very sharp. Summarising  the work 

on binary templates, random search methods can be used 

on binary templates  using a  single random and  two 

calculated step strategy. For this textured image  the 

calculated step was optimised at 12/100 for a 30x30  

template with a sparse grid spacing of 5x5 pixels. These 

results show the comparison between grey scale and 

binary  images and are indicative of results for the 

general case of binary images. 

 

4   Discussion  
This section is intended to provide a more technical and 

detailed overview of the experimental study, wiith 

general conclusions to be separately presented in the 

conclusion. The experimental results detailed above are 

summarised in Table II. 

 

A first point to be discussed is how general are the test 

images. For a mathematically complete evaluation of 

random search methods compared with sequential search 

methods, it is clear that the object of interest should be 

located at all possible positions and comparisons made of  

both search methods. A summation could then be made 

to give a "global" figure of merit for each method. For 

any finite sized search area, the amount of computation 

required is huge and also hugely unnecessary as results 

for random searches would give essentially the same 

result and it is also axiomatic that a systematic search will 

give a result  proportional to the distance of the sought 

object along the trajectory of search. Therefore the 

comparison was made with the object in the centre of the 

search space for comparison purposes as a fair and 

reasonable case for the purpose of comparing search 

methods  for a given  template size. 

 

In the previous paragraph, it was stated that the random 

search, different (unknown) object location “would 

essentially give the same results”. This is clearly the case 

except when the object is located close to an image 

boundary, as then two effects come into play 

(a) The distribution used for computation of random step 

may admit search locations outside the image, so that 

deleting such possibilities results in skewed search 

distrubutions. 

(b) The sought  object could be located totally  within the 

image,  but so close to image boundaries that the 

mismatch dip area overlaps the boundary, so that 

   Step  Avg Search 

   6  443 

   9  402 

   11  371 

   12  332 

   13  343 

   15  425 
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essentially this mismatch region is reduced in size. Such a 

(almost on edge) location will also reduce the efficiency 

of coarse to fine search strategies,. 

 

 

 

 

Table 2. Search Method Result Summary Search Space 

100x100 Template 12/5 Pebbles Object at 50,50 for 

sequential search and 30,30 for random search. 

  Search                       # Searches   SDV    Time 

  Method                                                       sec 

Sequential Search 5,051    0 1.70 

Sparse/Fine Seq'l. 5/1 1,742    0 0.38   

Simple  Random Search 8,540 9001 3.24 

1 Cluster Random Search 3989 4129 1.78 

2 Cluster Random Search 1288 4129 0.61 

3    "      "  " " 1174 1088 0.64 

4     " " " " 1083   964 0.48 

 

Fixed Step Cluster search 

3 Cluster Steps " 986   895 0.48 

 

5   Conclusion 
 

Object recognition and location via the use of templates 

is akin to a numerical optimization problem, where the 

function minima being sought are the bottom of rather 

narrow dips, of the order of  9 (pixel) units for the 

target/images examind here.  In this paper we examined 

the applicability of  random search algorithm, called the 

cluster algorithm, based on the Matyas algorithm. In the 

Matyas algorithm, a random step is taken from the 

current  “best so far” to determine a new location. In the 

(original) Matyas algorithm, a second position is then 

searched at a determinstic location along the line joining 

these two locations. The (original) Matyas algorithm 

corresponds to our cluster algorithm, with only two (of 

four possible) points in the cluster. Essential our results 

indicate that cluster search based algorithm with just 1, or 

2 (original Matyas)  cluster points offer little advantage, 

but that the full cluster or four yields notable speed ups 

for object location in greyscale images,, compared to the 

quite extensive range of  determinstic search strategies.  

 

It is important to note that random search inherently has a 

random element, so that the computational cost has a 

high standard deviation, which has been computed for the 

experimental data tabled. Because of this high standard 

deviation, the number of locations that need to be 

searched  to be confident that no object, or no further 

object(s) will be located, is significantly increased 

compared to an average search time for successful 

recognition/location. 

 

What this paper essentially shows is that over a range of 

images, random search methods can be applied with 

advantage. For the images of this study, we found (near) 

optimal values for the parameters of random search. In 

searching for objects located within the images of a large 

and varied database, or  a stream of real-time images 

from a mobile camera,  the parameters of the random 

search would need to be adjusted. 
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DROPPED 

 

Random search methods have been shown to be 

applicable to template based object recognition. We have 

shown that for a well-chosen value of  the calculated step 

factor or range for the calculated searches, random search 

methods  converge quickly.  For a 12x12 template and 

using pixels on a 5x5 sparse grid, and an object in the 

centre of a 100x100 search space, a random variable step 

cluster search averaged 1083 steps to find the object  

whereas a  sparse/fine search took with a sparse step of 

five took 1742 searches.  

 

The use of  sub sampled or sparse templates on a regular 

grid gives a large reduction in search time for a given 

template size both for random and sparse/fine searches as 

long as the number of remaining pixels is not too small..  

 

 

Results showed that random search methods may be 

applied to grey scale or binary images but binary image 

searches take longer to converge than grey scale image 

searches due to the smaller correlation  notch  for binary 

images. 

 

A distinct feature of GRS methods is the high variance of 

the number of steps required to find the object. If there is 

a large number of objects to find this effect will average 

out but for a single object to be found this is a potential 

disadvantage over a sequential search. Also if the object 

may not be present, it will take a large number of 

determinations for a GRS method to  be confident the 

object is not there, of the order of five times the average 

search.. In  summary a comparison  showing   sequential 

and random search results is shown in the following 

table: 

 

 

A particular strategy for a certain object template 

averaged approximately 400 searches in a 10,000 

position search space, about  4% of the search area. 

 
For random search methods, if the object is  located close 

to the boundaries this will increase the search time. 

Search time for a boundary location will nominally 

double compared with a non-extreme position as the 

mismatch region in which the search will converge, is 

halved. To find an object in a corner is even slower, with 

only a quarter of the correlation region available. 

Average search numbers can be expected to be in the 

ratio 1:2:4 for the open, edge and corner search positions. 

As the object moves away from the corners or edges, the 

correlation region will broaden to a full circle and object 

location will speed up.  
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The following discussion is for flat distribution random 

search steps rather than the Gaussian search steps  used 

by Matyas and Solis and Wets.  In random search 

techniques, searches are made at coordinates  that are 

purely random, ie have no connection whatever with 

previous search results or other steps which are  made 

close to the previous best match in order to find the 

minimum close to the point of best match found so far. 

The number of calculated local searches per random  

search  to find the point of best match is of considerable 

interest. The following results show the effect of varying 

the number of calculated steps from 1 per random search 

to 4 calculated steps per random search step.  

See the diagram below for search  location positions.  
 

 

Keywords:  Random search, object location, Matyas 

Algorithm 
 

 



13 

 

Image Database References that MIGHT be used: 

 

[?] Wayne Niblack and Myron Flickner, “Find Me the 

Pictures That Look Like This: IBM's Image Query 

Projec”,, Advanced Imaging, April 1993, pp 32-35. 

[?] A. Pentland, R.W. Picard and S. Sclaroff, 

“Photobook: Tools for content-base manipulation of 

image databases”, in Proc Society for Optical 

Engineers, SPIE Storage and Retrieval of Image and 

Video Databases II, San Jose, California, Feb 1993. 

[?] Rosalind W. Picard and T. Kabir, “Finding Similar 

Patterns in Large Image Databases”, IEEE ICASSP 

93, Minneapolis, Vol V, pp V-161-164. 

[?] Rosalind W. Picard and Fang Liu, “A New Wold 

Ordering for Image Similarity”, IEEE ICASSP 94, 

Adelaide, SA Vol V, pp V-129-132. 

[?] V.E. Ogle, Chabot: “Retrieval from a Relational 

Database of Images”.  IEEE Computer,Vol 28, No 9, 

Sept 1995, pp 40-48. 

 

 

 

 

 


